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Slominski, Andrzej, Desmond J. Tobin, Shigeki Shibahara, and Jacobo Wortsman. Melanin Pigmentation in
Mammalian Skin and Its Hormonal Regulation. Physiol Rev 84: 1155-1228, 2004; 10.1152/physrev.00044.2003.—
Cutaneous melanin pigment plays a critical role in camouflage, mimicry, social communication, and protection
against harmful effects of solar radiation. Melanogenesis is under complex regulatory control by multiple agents
interacting via pathways activated by receptor-dependent and -independent mechanisms, in hormonal, auto-, para-,
or intracrine fashion. Because of the multidirectional nature and heterogeneous character of the melanogenesis
modifying agents, its controlling factors are not organized into simple linear sequences, but they interphase instead
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in a multidimensional network, with extensive functional overlapping with connections arranged both in series and
in parallel. The most important positive regulator of melanogenesis is the MC1 receptor with its ligands melano-
cortins and ACTH, whereas among the negative regulators agouti protein stands out, determining intensity of
melanogenesis and also the type of melanin synthesized. Within the context of the skin as a stress organ,
melanogenic activity serves as a unique molecular sensor and transducer of noxious signals and as regulator of local
homeostasis. In keeping with these multiple roles, melanogenesis is controlled by a highly structured system, active
since early embryogenesis and capable of superselective functional regulation that may reach down to the cellular
level represented by single melanocytes. Indeed, the significance of melanogenesis extends beyond the mere
assignment of a color trait.

I. MELANIN PIGMENT

A. Melanins: Chemical and Physical Properties

Melanins, the end-products of complex multistep
transformations of L-tyrosine, are polymorphous and mul-
tifunctional biopolymers, represented by eumelanin,
pheomelanin, neuromelanin, and mixed melanin pigment
(323, 597, 598). Melanin biosynthesis can be initiated from
either the hydroxylation of L-phenylalanine to L-tyrosine
(nonobligatory step, operative in vivo) or directly from

L-tyrosine, which is then hydroxylated to L-dihydroxyphe-
nylalanine (L-DOPA) (obligatory step both in vitro and in
vivo). L-DOPA serves as a precursor to both melanins and
catecholamines, acting along separate pathways (Fig. 1).
The next step, oxidation of L-DOPA to dopaquinone, is
common to both eu- and pheomelanogenic pathways
(597, 598). Eumelanogenesis involves the further transfor-
mation of dopaquinone to leukodopachrome, followed by
a series of oxidoreduction reactions with production of
the intermediates dihydroxyindole (DHI) and DHI carbox-
ylic acid (DHICA), that undergo polymerization to form

FIG. 1. Synthesis of melanins. GSH, glutathione; Cys, cysteine. 1: Phenylalanine hydroxylation (by PH); 2: tyrosine
hydroxylation (by either tyrosinase or TH); 3: DOPA oxidation (by tyrosinase or metal cations); 4: dopachrome
tautomerization (by DCT/Tyrp2 or metal cations); 5a: DHICA oxidation (by Tyrp1 or peroxidase); 5b: DHI oxidation (by
tyrosinase or peroxidase); a: hydrolysis of glutathionyldopa (by �-glutamyltranspeptidase); b: oxidation of cysteinyldopa
(by peroxidase); c: intramolecular cyclization of cysteinyldopaquinone (may be facilitated by peroxidase); I: DOPA
decarboxylation (by AAD); II: hydroxylation of dopamine (by DBH); III: methylation of norepinephrine (by PNMT).
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eumelanin (323, 573, 597). Pheomelanogenesis also starts
with dopaquinone; this is conjugated to cysteine or gluta-
thione to yield cysteinyldopa and glutathionyldopa, for
further transformation into pheomelanin (323, 597, 598).
Mixed melanin contains both eu- and pheomelanin.
L-DOPA generation of catecholamines requires its enzy-
matic decarboxylation, hydroxylation, and methylation to
produce dopamine, norepinephrine, and epinephrine, re-
spectively (790). In vitro, all of these catecholamines can
potentially convert into neuromelanin through several ox-
idation/reduction reactions (Fig. 1) (787); in vivo, only
dopamine and cysteinyldopamine can serve as primary
precursors to the pigment (101, 151, 930).

Melanin pigments have in common their arrangement
of several units linked by carbon-carbon bonds (C-C), but
differ from each other in chemical composition, as well as
structural and physical properties (323, 597, 598). Thus
eumelanins are polymorphous nitrogenous biopolymers
(predominantly copolymers of DHI and DHICA), black to
brown in color, insoluble in most solvents (597, 598), and
tightly associated with proteins through covalent bonds.
Eumelanins behave like polyanions with the capability to
reversibly bind cations, anions, and polyamines in reac-
tions facilitated by their high carboxyl group content (323,
597, 598). A feature unique to eumelanin is a stable para-
magnetic state that results from its semiquinone units
(Fig. 2) (61, 126). Thus the electron paramagnetic reso-
nance (EPR) spectrum of eumelanin corresponds to a

slightly asymmetric singlet that generates a free radical
signal at approximately g � 2.004. The semiquinone units
are also responsible for eumelanin actions as redox pig-
ment with both reducing and oxidizing capabilities to-
wards oxygen radicals and other chemical redox systems
(126, 597, 598). Both eumelanin physical structure and
electrical properties are consistent with its behavior as an
amorphous semiconductor (210, 392, 544). Another inter-
esting property of eu- and pheomelanin chemilumines-
cence is related to oxidative degradation of the melanin
pigment (164, 658, 712).

In contrast to eumelanin, pheomelanin has a back-
bone of benzothiazine units and exhibits a yellow to red-
dish-brown color and is alkali soluble (323, 597, 598).
Pheomelanin is tightly bound to proteins, indicating that
in vivo it occurs as a chromoprotein (323, 597, 598), with
high variability in nitrogen and sulfur content (C/N and
C/S ratios) (597, 598). Pheomelanin can also act as a
binding agent for drugs and chemicals (73, 458) and, like
eumelanin, contains semiquinones with their associated
paramagnetic properties, but it also holds additional
semiquinonimine centers (688, 689). The resulting EPR
spectra of pheomelanins correspond therefore to a hyper-
fine structure with an unpaired electron localized near the
nucleus of 14N. These properties allow identification of
melanin type and quantification with EPR (Fig. 2) (443,
586, 688, 689, 713, 739, 744, 745). Pheomelanins are pho-
tolabile, and its photolysis products include superoxide,

FIG. 2. Electron paramagnetic reso-
nance (EPR) analysis of melanin prod-
ucts in follicular melanocytes from yel-
low and black gerbils (top). Bottom, left:
EPR spectrum of yellow hair showing
hyperfine splitting similar to the spec-
trum of cysteinylDOPA melanin (a syn-
thetic model of pheomelanins). Asterisk
indicates low field component of the
splitting. Bottom, right: EPR signals of
black hair and DOPA melanin (a syn-
thetic model of eumelanins with no hy-
perfine splitting). The spectra were re-
corded at �196°C (77°K), at the field of
328 � 10 mT, modulation amplitude of
0.1 mT, microwave power 8 mW and fre-
quency 9.22 GHz, time constant 0.3 s, and
scan time 8 min. Corresponding gains are
as follows: 150,000 (yellow hair); 80,000
(cysteinylDOPA melanin); 20,000 (DOPA
melanin); 8,000 (black hair). DPPH, 1,1-
diphenyl-2-picrylhydrazyl—the position
of a free radical signal (g � 2.0037).
[From Plonka et al. (586), with permis-
sion from the Blackwell Munskgaard.]
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hydroxyl radicals, and hydrogen peroxide (597, 598). The
trichromes B, C, E, and F are pheomelanin-related prod-
ucts containing a basic structure unit consisting of 1,4-
benzothiazine that can exist in two tautomeric forms (597,
598).

Neuromelanins are macropolymers composed of
aminochromes and noradrenalinochromes (101, 151, 522,
787, 930). Similar to other melanins, neuromelanins are
brown/black pigment with stable paramagnetic proper-
ties, insoluble in organic solvents, bleached by hydrogen
peroxide, and labeled by silver stain (930). Neuromela-
nins have mixed properties of both eu- and pheomelanins;
they chelate metals and interact with several inorganic
and organic compounds (9, 151, 428, 930). Other types of
melanins may be generated by enzymatic oxidation of
serotonin or tryptophan via tyrosinase; the resulting prod-
ucts have structures different from classical melanin (45).
Melanin-like substances can also result from the tyrosi-
nase-mediated transformation of opioid peptides that pro-
duce black to brown pigments with paramagnetic prop-
erties almost identical to DOPA-melanin (633).

B. Melanin Pigment in Skin Physiology

and Pathology

1. Human skin

Epidermal melanin has important evolutionary and
physiological implications, particularly for unclothed hu-
mans. Thus high melanin content (racial pigmentation)
protects the skin against ultraviolet (UV)-induced skin
damage through its optical and chemical filtering proper-
ties (8). Indeed, skin pigment levels and anthropological
origin are closely associated, with higher pigment
amounts in regions of lower latitude and higher UV radi-
ation levels. However, this connection may only be a
recent human adaptation since early hominids may have
possessed dark, dense, terminal body hair. A closely re-
lated primate, the chimpanzee, similar to most other non-
human primates, exhibits white or lightly pigmented epi-
dermis (591). Interestingly, chimpanzees have active me-
lanocytes only in the epidermis of those areas directly
exposed to UV radiation, e.g., face and friction surfaces
(488).

The tendency toward relative hairlessness in modern
humans has been explained by the need to maintain ther-
mal balance under the progressive increase in demands
for heat dissipation that results from the enhanced blood
flow to the brain. Alternately or complementarily, hair-
lessness would also reduce parasitic infestations (549).
Without concomitant increase in epidermal melanization,
the end result of reduced hair coverage in humans resid-
ing in high UV radiation areas would be direct exposure to
the adverse effects of that radiation. These include sun-
burn damage to the sweat glands with resultant suppres-

sion of sweating and abnormal thermoregulation (550),
carcinogenesis, and nutrient inactivation by photolysis
(e.g., folate) (74). Human populations living in areas with
lower UV levels would adapt with lesser pigmentation,
which also facilitates the cutaneous UV radiation-medi-
ated conversion of 7-dehydrocholesterol to pre-vitamin D3

(876) In fact, if UV exposure of pigmented humans is
limited in duration and/or intensity (e.g., northern lati-
tudes), vitamin D3 deficiency and its associated patholo-
gies may result, as seen in Southern Asians (Indians)
living in northern European cities (267). Nevertheless, the
value of the melanin pigmentation as a truly effective
sunscreen for seasonal tanning is debatable since its sun
protection factor (SPF) is only 1–2 (902). Additional prop-
erties of melanin may include a bactericidal potential via
the production of orthoquinones (618), and contribution
to the tensile strength of hair via cross-linking with pro-
teins.

Hair color may have undergone a far more complex
evolution than skin pigmentation. Although most humans
are dark-haired and dark-eyed, melanization in skin, hair,
and eyes do not closely correlate. Indeed, a large fraction
of humans have dark eyes and hair but their skin would
rate as “white,” whereas in some western European pop-
ulations, black hair commonly coexists with blue eyes.
The occurrence of black scalp hair, a potent trap for
radiant heat, may appear as a paradoxical development
for primates and humans living in tropical climates; how-
ever, black scalp hair may provide some protection from
sunstroke by helping with the salt balance through the
highly efficient and fast ion exchange property by melanin
(746, 902). In fact, the pigmented hair on the human scalp
may have resulted from the littoral residence of Homo

sapiens residing on sea coasts or riverbanks, with diet
dominant in fish (many of which concentrate heavy met-
als). In this context, the capability to rapidly excrete toxic
metals provided by the very high turnover of melanized
cortical keratinocytes in the pigmented hair shaft would
confer a selection advantage (46). Thus the long, mela-
nized scalp hair with its capability to trap and/or bind
chemicals, toxins, and heavy metals would prevent their
access to living tissues. Pigmented hair may also provide
antioxidant defense for the skin and hair follicles due to
the high capacity of melanin for binding transition metals.
This buffering capacity as applied to calcium would imply
a role for melanin in cell function, since calcium is a
critical second messenger in pigmentation signaling, act-
ing in the transfer of melanosome to keratinocytes, and in
epithelial cell differentiation (746).

A) SEXUAL DIFFERENCES IN SKIN MELANIZATION. The epider-
mis of adult human females is less melanized than in adult
males, suggesting a gender-specific effect (626). One pos-
sible explanation for this discrepancy could be the higher
need for vitamin D in women that is imposed by the

1158 SLOMINSKI, TOBIN, SHIBAHARA, AND WORTSMAN

Physiol Rev • VOL 84 • OCTOBER 2004 • www.prv.org

on A
ugust 24, 2014

D
ow

nloaded from
 



increased intestinal calcium absorption of pregnancy and
lactation (894).

B) MELANIN ROLE IN HUMAN PATHOLOGY. The main action of
melanin in human skin appears to be attenuation of UV
penetration to blood in dermal vessels. This may be in-
ferred from the observation that peak UV absorption for
oxyhemoglobin occurs at 545 nm, a value that in light-
skinned individuals produces the strongest erythema re-
action, and consequent pigmentary response. Also, when
exposed to UV radiation, melanin can undergo photosen-
sitization generating superoxide radicals and lethal injury
in individual cells. Paradoxically, this action would how-
ever confer protection against the more deleterious out-
come of cell neoplasia, consistent with the decreased
proliferation rate of highly melanized normal skin cells
(194), and with the close linkage between melanin pro-
duction and photorepair of UV-induced DNA damage
(212). Taken together, these data imply that melanin is
important for skin homeostasis and that tanning itself
represents a distress signal. The same pathophysiological
explanation would apply to the localized pigmentation
that follows the exposure of melanin to toxic compounds,
and that may result in marked increases in melanin gran-
ules and melanin deposition (427).

Abnormalities in the transfer of melanosomes out of
the melanocytes and into receiving keratinocytes repre-
sent the human counterpart of the dilute mutation in mice
where the motor protein myosin V is defective. Disorders
associated with aberrant melanosomes include the mac-
romelanosomes and autophagic giant melanosome com-
plexes of nevocellular nevi, lentigo simplex, malignant
melanoma, and the neuroectodermal melanolysomal dis-
eases that include the Elejalde, Chediak, Higashi, and
Griscelli syndromes (515, 779, 780). These syndromes are
more likely due to disordered melanosome biogenesis
than alterations in melanosome degradation.

The most common pigment disorders are not disor-
ders of melanin quality, but rather of the pigment-produc-
ing cell itself, which may be reduced in number, absent, or
hyperactive and commonly, with regional localization.
Hypomelanosis can either be acquired, e.g., vitiligo, or
congenital via inheritance of mutations in pigment-related
genes, e.g., albinisms and piebaldisms. Pigment excess
(hypermelanosis) can be associated with inflammatory
responses, as in keloid scars, or with local abnormal
melanocyte function, as in dysplastic nevi or malignant
melanoma.

C) MELANIN METABOLISM. Intact mature melanosomes
pass from basal melanocytes into keratinocytes and their
lysosomal compartment to become melanin dust in the
upper nonviable layers of the epidermis. There is scant
information on the actual mechanism of melanin break-
down or biodegradation. The melanin polymer appears to
be resistant to enzymatic lysis, and it has been speculated
that only phagosomal NADPH oxidase can degrade mel-

anin itself via oxidative attack (68). Nevertheless, hair
melanin granules, unlike those in overlying epidermis,
tend to remain intact in the hair shaft. This is especially
true for the eumelanogenic melanosomes of the black hair
shaft such as seen in the hair of East-Asian (Oriental)
individuals, the ethnic group with the highest density of
pigment granules. In contrast, the pheomelanin granules
characteristic of red and blonde hair, are partially di-
gested. Both melanin types can be synthesized and re-
leased by the same melanocyte.

2. Furry mammals (rodents)

Most of the information on skin pigmentation has
emerged from the intensive study of rodent coat color, as
opposed to research focused specifically on epidermal
pigmentation. As a uniquely mammalian trait, hair serves
important functions most easily appreciated in furred
mammals. These include thermal insulation, camouflage
(for many species, melanin affords significant additional
protective value, e.g., seasonal change of coat color in the
arctic fox), social and sexual communication (involving
visual stimuli, odorant dispersal, etc.) and sensory per-
ception (e.g., whiskers). Many furred mammals, including
the mouse, lack melanogenically active melanocytes in
their adult truncal epidermis; instead, melanin is pro-
duced in the hair follicle bulb. There is, however, consid-
erable variation in pigment patterns within and between
furred mammals; for example, perifollicular melanocytes
extend to the dermis in the hairy truncal skin of the adult
Syrian golden hamster (602).

Mammalian hair color exhibits a wide range of
shades. The highly variable color of murine pelage reflects
variation in the copolymerization of eu- and pheomela-
nins, which results in the production of black, brown,
yellow, gray, or white hair fibers. Natural eumelanins are
produced by comixtures of DHI and DHICA, which pro-
vide variable contributions to pigmentation. For example,
dilution mutant mice (e.g., slaty) exhibit a 30% reduction
in total melanin compared with the black hair type, but
the specific reduction in DHICA content can be �80%
(548). DHICA melanins determine brown colors in the
animal kingdom (538), although the ratio of DHI to
DHICA in the brown mutation is similar to that seen in the
black hair type. The light mutation at the brown locus
results in the presentation of melanin only at the hair fiber
tips due to premature death of follicular melanocytes
(339). The silver mutation in mice is also associated with
progressive graying caused by loss of melanocytes. Silver
melanin is similar to brown and light melanins in those
light-silver animals producing a diffuse “soluble” melanin
within degenerating melanocytes.

Studies performed on the yellow (Ay/a) mouse and
on the tortoise-shell guinea pig, with its potential to de-
velop black, red, yellow, or white hair, have shown that
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the variation in melanin color is due to relative levels of
glutathione reductase activity. Lowest levels are associ-
ated with black eumelanic hair, while highest levels are
found in animals with lighter colors, and largely
pheomelanosomes (40). Many of these color patterns map
genetically to the extension locus (see elsewhere in this
review). However, hair shaft color reflects not just the
quantity and quality of the pigments produced by hair
bulb melanocytes, but also the manner in which they are
transferred to the hair shaft. Thus mouse coat color mu-
tations, besides being associated with differences in mel-
anin synthesis, can also be due to abnormalities in the
formation of the melanosome and their transference to
keratinocytes. These mutations are detected on qualita-
tive and quantitative electron microscopy (224). For ex-
ample, the albino locus is associated with a reduction in
melanosome size, but data suggest that the albino locus,
in addition to involve that structure, also has a functional
(tyrosinase) role in the differentiation of mouse hair-bulb
melanosomes. Data on melanosome length-to-width ra-
tios indicate that the agouti locus determines melanosome
shape, either spherical or elliptical. The agouti locus, even in
the absence of melanization, directs melanosome shape via
synthesis and deployment of agouti-locus-encoded matrix
proteins, or via other structural actiors.

Abnormal transfer of melanin granules into the hair
shaft can also lead to variation in pigmentation of mouse
coat. An example of this is the dilute mouse, where re-
duction in coat color is due to mutation of the gene
encoding for myosin Va (885). Thus, whereas mature
melanosomes of normal melanocytes are located at the
dendrite tips, in dilute mice they are retained in the peri-
nuclear region of the cell due to a defect in protein motor
capacity to transport melanosome along the cytoskeletal
tracks to the dendrite tips. The discovery of this mouse
gene, later identified as the first candidate gene for the
Griscelli locus (Griscelli syndrome patients display severe
immunodeficiency with diluted hair pigmentation), has
stimulated a new field of study concerned with the func-
tion of molecular motors in vesicle/organelle transporta-
tion (849).

II. BIOCHEMISTRY AND CELLULAR AND

MOLECULAR BIOLOGY OF MELANOGENESIS

A. Melanocytes as Melanin-Producing Cells:

Cell Biology and Ultrastructure

Under physiological conditions, melanin synthesis
in melanocytes is restricted to melanosomes, and its
enzymatic and structural elements are organized and
assembled separately in a process resembling lysosome
formation (333, 335, 487, 515, 597), although membrane
traffic pathways differ between melanosomes and lyso-

somes (187). In general, melanosome structure corre-
lates with the type of melanin produced, e.g., eumela-
nosomes are elliptical and contain fibrillar matrix while
pheomelanosomes shape is variable with predomi-
nantly rounded contour and contains vesiculoglobular
matrix (515). Melanosome development involves four
steps. Stage I corresponds to the early matrix organi-
zation. In stage II, the matrix is already organized but
without melanin formation (eumelanosomes); in
pheomelanosomes melanin is already formed at this
stage. In stage III there is deposition of melanin. In
stage IV, melanosomes are fully melanized (completely
filled with melanin) (Fig. 3). Under pathological condi-
tions (e.g., melanoma), this orderly process is deregu-
lated; for example, tyrosinase may already be activated
at stage I of melanosome formation, whereas melanin
can be deposited within organelles as a “granular type”
without fibrillar or vesiculoglobular matrix (65, 334).
These granular melanosomes produce eumelanin (Fig.
3C). There is no evidence for differences in melano-
some biogenesis between follicular and epidermal me-
lanocytes. Thus, in black hair follicles, melanocytes
contain the largest number and most electron-dense
melanosomes (eumelanosomes), each with a fibrillar
matrix; in brown hair, bulb melanocytes are somewhat
smaller, and in blonde hair melanosomes are poorly
melanized, often with only the melanosomal matrix
visible. Red hair pheomelanosomes contain a vesicular
matrix, but melanin is deposited irregularly, in blotches
(Fig. 3). Of interest, both eumelanogenic and pheomela-
nogenic melanosomes can coexist in the same human
cell (316), but not within the same pathway, e.g., there
is a switch committing melanosomes to either eu- to
pheomelanin synthesis (547). These structural princi-
ples apply to follicular melanocytes and also probably
to human epidermal melanocytes and rodent cutaneous
melanocytes (181, 515).

Melanosome-genesis involves interactions between
rough endoplasmic reticulum (RER) structures and vesi-
cles and channels of the trans-Golgi Network (TGN); thus
early premelanosomes (stage I) are formed by outpouch-
ing of a smooth membrane from the RER (487, 515, 782),
and at stage II of the eumelanogenic pathway a fibrillar
matrix is formed. It was recently proposed that late en-
dosomes may be the initial sites of stage I melanosome
formation (333, 335, 456, 608); further maturation would
be driven by delivery of structural and enzymatic pro-
teins, and by their activation followed by substrate deliv-
ery. Others believe that formation of melanosomes is
driven by independent, but overlapping, mechanisms
(384). Maturation of eumelanosomes is the subject of two
main views. One suggests that the enzymatic proteins
required for melanogenesis are delivered via coated ves-
icles to melanosomes that originate from the endoplasmic
reticulum and Golgi (335). An alternate interpretation is
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that tyrosinase and other melanogenesis-related proteins
are sorted to early endosomes by the adaptor protein-3
system (from the TGN) and from there to late endosomes,
which then fuse with stage I melanosomes (384). Stage I
melanosomes may contain some melanogenesis-related
proteins (MRPs), but these remain catalytically inactive
until subsequent protein cleavage events release them
into the interior of melanosomes. These events are asso-
ciated with a change in melanosome shape, from spheri-

cal to ellipsoidal, and with the formation of an intramela-
nosomal fibrillar network (eumelanosomes). Melanogen-
esis commences when tyrosinase and other relevant
enzymes are cleaved, and initiation of activity may de-
pend on an acidic environment provided by proton pumps
(454, 601). It is believed that at acidic pH fully mature
tyrosinase hydroxylates L-tyrosine to L-DOPA to begin
melanin synthesis forming stage III melanosomes (454,
487, 515, 537, 538).

FIG. 3. Electron microscopy of
melanosome development during eu-
melanogenesis in normal melanocytes
(a–f), of pheomelanogensis (g–j), and of
granular melanosomes in melanoma
cells that synthesize eumelanin (k). I, II,
III, and IV in a–j and 1, 3, and 4 in k

represent stages of melanosomal devel-
opment. Scale bars are as follows (in
�m): a, 0.20; b, 0.23; c, 0.24; d, 0.22; e,
0.20; f, 0.35; g, 0.23; h, 0.26; i, 0.26; j, 0.30;
k, 0.5.
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Another theory postulates earlier involvement of ty-
rosine hydroxylase to produce L-DOPA that acts as a
necessary cofactor for tyrosinase enzyme action (457).
The initial hydroxylation reactions, as well as L-DOPA
stability, require an acidic environment that is provided
by premelanosomes, where pH is regulated by a proton
pump system (145, 487, 601). However, once L-DOPA is
present, efficient formation of melanin pigment requires
an increased pH (preferably neutral or basic) (19, 191),
since acidification inhibits melanin synthesis (191, 487).
The mechanism(s) for delivery of MRPs is under intensive
investigation, and the timing of their actual incorporation
into melanosomes is still unclear. Proper folding and
assembly of MRPs in the ER requires their interaction
with calnexin, glycosylation in the TGN, and the interac-
tion of tyrosinase with TyrP1 or P protein (262, 385). MRP
transport requires the formation of special vesicles, with
assembly of coat proteins on the cytoplasmic side of the
TGN to select MRPs for melanosomal delivery (333, 692).
The adapter protein-3 (AP-3) that binds a dileucine motif
in the cytoplasmic tail of tyrosinase-related proteins
(TRPs) is important for the transport of TRPs from the
TGN to melanosomes (335, 692). Small GTP binding pro-
teins such as Rab 5 and 7, and phosphatidylinositol 3-ki-
nase are involved in the intracellular trafficking of MRPs
(333). An updated model of melanosome formation and
trafficking of MRPs (Fig. 4) (132) includes tyrosinase,
TyrP1, TyrP2, MART-1, P and gp100, and also the patho-
logical misrouting of tyrosinase and TyrP1 (385). Pro-
teomic analysis of early melanosomes has provided new
information on the recruitment of organelle specific pro-
teins and on membrane remodeling crucial for melano-
some formation, movement, and transfer (Fig. 5) (33).

The recently cloned pink-eyed dilution mouse gene
(p) and its human P homolog encode a melanosomal
protein with 12 transmembrane domains with partial ho-
mology to a tyrosine specific transporter protein in Esch-

erichia coli (204, 620). Mutations in this gene lead to
decreased pigmentation in mice (620) and to type II ocu-
locutaneous albinism in humans (OCA2) (204). It has
been proposed that P protein could act as transporter for
tyrosine (204, 620), as ion exchange protein in the mela-
nosomal membrane (601), or as regulatory protein for the
processing and assembly of MRPs (539). Alternatively, P
protein could act as specific “L-tyrosine receptor/trans-
ducer” (736, 739) after binding L-tyrosine or related mol-
ecules; thus it would regulate the assembly of the mela-
nogenic apparatus in vivo (293, 720, 732–734). This would
be consistent with the homology of the P protein to the
tyrosine specific transporter (204, 620), and with the pro-
posed regulatory role for P protein in the assembly of the
melanogenic apparatus (539).

Melanosomes also contain the lysosome-associated
membrane proteins (LAMP) that protect the lysosomal
membrane (333, 335, 654) and, as already mentioned, the
presence of LAMP-1, -2, and -3 proteins in melanosomes
supports a common ancestral origin for melanosomes and
lysosomes. It has been suggested that LAMP-1 protects
melanosomal integrity by acting as a scavenger of free
radicals produced during melanogenesis, while the mem-
brane-bound calcium binding protein calnexin (p90) of 90
kDa would participate in the assembly of melanosomal
proteins and regulation of tyrosinase (335, 654). Melano-
somes contain a proton pump that allows regulation of
intramelanosomal pH; melanosomes also internalize cell
surface melanocyte-stimulating hormone (MSH) recep-
tors via the endocytic pathway (487). These properties
together with the incorporation of lysosomal enzymes
such as acid phosphatase and the lysosomal protective
protein LAMP strengthen the view that lysosomes and
melanosomes share a common pathway of organellogen-
esis (333, 335, 487, 607, 654). The MSH-induced delivery of
MSH receptor to melanosomes points to a possible intra-

FIG. 4. Trafficking of melanogenesis
related proteins to melanosomes (stages
I–IV) and misrouting in albinism (OCA1–
3). [From Costin et al. (132), with permis-
sion from the Company of Biologists
Ltd.]
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cellular mechanism for specific and precise regulatory
function of MSH (415, 487, 561).

The mechanism of pheomelanosome formation is
less precisely defined than for eumelanosomes. Briefly,
vesiculoglobular bodies are incorporated into stage I
melanosomes. At stage II melanosomes, pheomelanin is
deposited on a vesiculoglobular matrix (333, 335, 515, 597,
708), indicating the presence of tyrosinase activity at an
earlier phase than in the eumelanogenic pathway. The
process of pheomelanogenesis depends on the presence
of tyrosinase activity, which is comparatively low, and on
the availability of cysteine to conjugate dopaquinone
formed by tyrosinase action (515, 597, 598).

Because melanosomes are metabolically active or-
ganelles, their activity is bound to affect the function of
the host melanocyte or keratinocyte (746). Thus melano-
somes modify the cellular energy-yielding metabolism by
switching oxidative catabolism to anaerobic glycolysis
(684), altering the intracellular NAD/NADH and NADP/
NADPH ratios (682) and/or stimulating the pentose phos-
phate pathway (683). The presence of pigment granules
that can regulate intracytosolic calcium concentration, or
reversibly bind cations or bioregulatory compounds such
as catecholamines, serotonin, and prostaglandins, may
also affect the function of the host cell (736, 746). Based
on this, it has been further proposed that melanosomes
could serve as an accurate indicator for cellular responses
to the environment (262). Results of proteomics analyses
appear to support the notion that melanosomes are com-
plex organelles (Fig. 5) (33) that regulate the function of
melanocytes and perhaps other surrounding cell types
(262, 385, 736–738, 746).

B. Biochemistry of Melanogenesis

1. Introduction to melanogenesis

Cutaneous pigmentation is under complex genetic
control regulated by more than 150 alleles spread over 90
loci (262, 263, 328, 385, 515, 673, 708). Protein products of
these loci acting as enzymes, structural proteins, tran-
scriptional regulators, transporters, receptors, and
growth factors have a wide array of functions and cellular
targets (263, 515). Among them are the important struc-
tural, enzymatic, and regulatory melanosomal proteins
coded by albino(c)/TYR, brown(b)/TYRP1, slaty(slt)/
TYRP2/DCT, silver(slt)/SILV, pink-eyed dilute(p)/P/OCA2,
underwhite(uw)/LOC51151, MART1, and OA1 loci (263,
515).

An early obligatory and rate-limiting step in melano-
genesis is the hydroxylation of L-tyrosine to L-DOPA cat-
alyzed by either the tyrosine hydroxylase activity of ty-
rosinase (EC 1.14.18.1) (264, 413, 464, 575, 597) or possi-
bly by tyrosine hydroxylase itself (457). Once L-DOPA is
formed, further steps of melanogenesis (series of oxi-
doreduction reactions and intramolecular transforma-
tions) can occur spontaneously, at varying rates depend-
ing on hydrogen ion concentration, presence, and concen-
tration of metal cations, reducing agents, thiols, and
oxygen (597). Most importantly, the velocity and specific-
ity of the pathway are regulated by the melanogenesis-
related enzymes (MREs) of which the most important is
tyrosinase (264, 575, 597).

The availability of L-tyrosine for enzymatic oxidation
is a central component of melanogenesis, regulated at the

FIG. 5. Melanosome proteomics.
Protein components are divided accord-
ing to function and origin. [From Basrur
et al. (33), with permission from the
American Chemical Society, copyright
2003.]

HORMONAL REGULATION OF MELANOGENESIS 1163

Physiol Rev • VOL 84 • OCTOBER 2004 • www.prv.org

on A
ugust 24, 2014

D
ow

nloaded from
 



level of transport both through the plasma membrane,
and from the cytosol into the melanosome (592, 593).
Another source of L-tyrosine, L-phenylalanine (taken up
actively by melanocytes via neutral amino acid Na�-Ca2�-
ATPase antiporter system) (673, 790) and hydroxylated by
phenylalanine hydroxylase (PAH) (EC 1.14.16.1) can gen-
erate relatively high intracellular concentrations of L-ty-
rosine, sufficient to initiate melanogenesis (673, 676).
Thus initiation of melanogenesis is dependent on either
transport of L-tyrosine from the extracellular space or
intracellular hydroxylation of L-phenylalanine by PAH reg-
ulated by availability of reduced tetrahydropteridine co-
factor (661, 670, 673).

The type of melanin produced is determined by the
enzymatic library available and its prevalent metabolism
(Fig. 1). For example, in the central nervous system,
enzymatic decarboxylation of DOPA by aromatic amino
acid decarboxylase (AAD) yields catecholamines that
may be oxidated to neuromelanins. It is nevertheless
unclear whether oxidation of catecholamines in substan-
tia nigra with transformation into neuromelanins is cata-
lyzed enzymatically or whether it is dependent on physi-
cochemical factors (e.g., pH, presence of metal cations,
and thiols concentration) (930). The involvement of mac-
rophage inhibitory factor in the formation of neuromela-
nin has been already demonstrated (262, 467, 638, 664),
but not the involvement of peroxidase (930). In melano-
cytes, the presence of tyrosinase allows rapid oxidation of
tyrosine or L-DOPA to dopaquinone, initiating eu- or
pheomelanogenesis pathways. Similarly, high concentra-
tions of metal ions such as Mn2� or Cu2� also rapidly
oxidized DOPA to melanin. Metal cations such as copper,
zinc, and iron are also involved in the rearrangement of
dopachrome to DHICA, thus affecting the composition of
the melanin polymer (597, 598).

The formation of eu- or pheomelanin is directly de-
termined by the presence/absence of cysteine (actively
transported through the melanosomal membrane) (262,
594, 597, 598), and of GSH in fully reduced thiolate state
and redox potential (high GSH for eumelanin and low for
pheomelanin). Therefore, the presence and actual activity
in the melanocyte of antioxidant enzymes such as cata-
lase, superoxide dismutases, glutathione peroxidase, glu-
tathione reductase, and thioredoxin reductase/thiore-
doxin would modify quantitatively or qualitatively the
melanogenic pathway (664). When concentration of sulf-
hydryl compounds is low, dopaquinone is converted to
dopachrome, initiating the eumelanogenic pathway. High
concentrations of cysteine and glutathione lead to their
conjugation with dopaquinone and corresponding forma-
tion of cysteinyldopa (5-S-cysteinyldopa is the major iso-
mer while 2-S-cysteinyldopa, 6-S-cysteinyldopa, and 2,5-
dicysteinyldopa are minor isomers) and glutathionyldopa
(597, 598). The transformation of oxidized glutathione
(GSSG) to reduced glutathione (GSH) by glutathione re-

ductase, which requires NADPH, is crucial for the forma-
tion of glutathionyldopa (GSDOPA). Hence, the NADPH/
NADP recycling system and consequently the pentose
phosphate shunt are indirectly involved in the regulation
of melanogenesis (682, 683). GSDOPA is further trans-
formed by glutamyltranspeptidase to cysteinyldopa (323),
which serves as the starting point of pheomelanogenesis.
The velocity of the postcysteinyldopa steps of pheomela-
nogenesis is increased by peroxidase and tyrosinase
through oxidative transformation of benzothiazinylala-
nines (597, 598).

2. Tyrosinase, the main enzyme regulating

melanin synthesis

The key regulatory enzyme of melanogenesis, tyrosi-
nase (EC 1.14.18.1), is encoded by the TYR or c-locus that
maps to chromosome 11q14–21 in humans (32) and chro-
mosome 7 in mice, respectively, and is composed of five
exons and four introns (387, 515, 820). The posttranscrip-
tional processing of pro-tyrosinase mRNA generates sev-
eral alternatively spliced products (351, 407, 590, 702) of
which some are translated to protein products with only
one expressing tyrosinase activity (500, 642). It has been
proposed that products of translation of alternatively
spliced tyrosinase mRNA could serve as regulatory pro-
tein (736, 739), acting for example as “receptors” for
L-tyrosine and L-DOPA (739). It must be noted that enzy-
matically nonfunctional tyrosinase proteins can be ex-
pressed in nonmelanocytic cells of neural crest origin
(254, 826).

The structure of tyrosinase protein is highly con-
served among different species and shows high homology
with other tyrosinase-related proteins including tyrosi-
nase-related protein 1 (TRP1/TYRP1) and tyrosinase-re-
lated protein 2 (TRP2/TYRP2/DCT) (Fig. 6). The NH2-
terminal domain of tyrosinase comprises the NH2-termi-
nal signal peptide (important for intracellular trafficking
and processing), the EGF-like/cysteine-rich domain, two
histidine-rich regions binding copper with a cysteine-rich
region between them (the important catalytic domain), as
well as the COOH-terminal hydrophobic transmembrane
segment and cytoplasmic tail (387, 389, 515, 702). The
transmembrane and cytoplasmic domains are necessary
for targeting the enzyme to the melanosome (333, 335,
692), while the NH2 terminus cysteine-rich region may
serve as a protein binding/regulatory domain unrelated to
enzymatic function. Newly synthesized tyrosinase has a
molecular mass of 55–58 kDa and an isoelectric point of
4.2. Proper folding of tyrosinase protein in the endoplas-
mic reticulum (ER) appears to be crucial for its further
transport to Golgi apparatus. Proteolytic cleavage of the
transmembrane portion of the newly synthesized enzyme
generates two soluble molecular forms: a 53-kDa unmod-
ified protein, or a 65-kDa glycosylated tyrosinase, which
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may be active in the melanosome or secreted into the
extracellular environment. After glycosylation in the
trans-Golgi complex, tyrosinase increases in size to 65–75
kDa or even 80 kDa (140, 141, 264, 335, 655). The higher
molecular mass forms of tyrosinase (140, 655, 720, 722,
741) may represent dimmers, tight complexes with other
melanogenic proteins (542), or high-molecular-weight ty-
rosinase proteins. It is still unclear how or when copper
ions (necessary for enzymatic activity) are integrated into
apotyrosinase. However, recent data suggest that the
Menkes copper transporter (MNK) is required for copper
loading of tyrosinase enzyme and consequently its activa-
tion (581). The catalytic site of tyrosinase is represented
by two copper atoms ligated to six histidine residues.

Defects in TYR gene lead to the tyrosinase negative
oculocutaneous albinism type 1 (OCA1) (524, 809, 838). In
addition to mutations in hot spots (copper binding do-
mains), virtually the entire coding sequence of the gene is
susceptible to mutations. These include missense, non-
sense, frameshift, and splicing abnormalities (524) (http://
www.cbc.umn.edu/tad). If translated, mutant tyrosinase
proteins are routed for degradation by proteasomes (due
to the retention of misfolded proteins in the ER), rather
than allowed to pass to the Golgi apparatus for glycosyl-
ation and further transport to premelanosomes (244, 246,
249, 385, 841, 842). Similarly in OCA3, mutated TYRP1 is
retained within ER and appropriate processing of normal
tyrosinase is aborted leading to its proteasomal degrada-
tion and consequently significantly reduced pigmentation

(385, 841, 842). In OCA2 (mutation of P) or OCA4 (muta-
tion of MATP) tyrosinase sorting from TGN to melano-
somes is also disrupted (115, 132, 385, 840). There is also
a large body of experimental evidence generated in vari-
ous melanocytes systems, showing that proper processing
within the ER is a necessary step for tyrosinase matura-
tion, its targeting to melanosomes, and consequently mel-
anin pigment production (243, 244, 246, 248–250). Thus
the defects underlying OCA1 through OCA4 strongly im-
ply that in vivo melanogenic activity depends mainly on
posttranslational pathways, of which the most important
is effective processing of tyrosinase (Fig. 4). In fact, the
levels of tyrosinase mRNA are similar in cultured mela-
nocytes from European white and African black individ-
uals (318), and tyrosinase gene expression level appears
to be similar across human racial groups (191, 324). Other
points of potential dysregulation of the melanogenic ac-
tivity of tyrosinase are represented by lack of melano-
somes with resulting accumulation of the enzyme in TGN
or block in translocation from TGN to melanosomes (65,
714, 733), presence of intracellular tyrosinase inhibitors
(344) or protein kinase-dependent phosphorylation of reg-
ulatory residues (373, 552, 900).

Tyrosinase catalyzes three distinct reactions in the
melanogenic pathway: hydroxylation of monophenol
(L-tyrosine), dehydrogenation of catechol (L-DOPA), and
dehydrogenation of DHI; L-DOPA serves as cofactor in the
first and third reactions (264, 374, 413, 575). Both ortho
hydroxylation of tyrosine and dehydrogenation of DOPA

FIG. 6. Gene and protein structures
of tyrosinase, TYRP1 and TYRP2. N and
C are the amino and carboxy protein ter-
minus, respectively; Cy-rich, cysteine-
rich segments; Cu or Me, Cu or metal
binding domains; t, transmebrane seg-
ment. In the gene structure, numbers
represent exons.
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may proceed in a single step in which the substrate bind-
ing site for L-tyrosine and L-DOPA is the same, and the
reaction involving electrons exchange with copper atoms
generates orthoquinone and water as final products (re-
viewed in Refs. 400, 401, 515, 619). It has been proposed
that production of DOPA during tyrosine oxidation by
tyrosinase is the result of spontaneous reductive cycliza-
tion of dopaquinone to cycloDOPA that undergoes redox
exchange with dopaquinone to yield dopachrome and
DOPA. The latter is necessary for copper reduction and
formation of deoxytyrosinase. Thus the stability, folding,
and activation of tyrosinase are critically controlled by
redox conditions. Activation of inactive enzyme (met-
tyrosinase) involves the reduction of its two Cu2� sites to
two Cu1� centers (fully active form; deoxytyrosinase)
requiring a two-electron reduction step. L-DOPA is the
most efficient electron donor necessary to start tyrosine
hydroxylation, although ascorbic acid, dopamine, and su-
peroxide anion radicals can potentially activate the en-
zyme (903). The effect of ascorbic acid on the monophe-
nolase activity of tyrosinase has been explained by its
reducing action on enzymatically generated quinines, thus
inducing accumulation of L-DOPA, the main electron do-
nor to the Cu2�-Cu2� enzyme active site (629). A similar
mechanism may be responsible for the reduction in lag
period for tyrosine hydroxylation by catecholamines, by
reduced tri- and diphosphopyridine nucleotides, and by
high concentrations of tetrahydropteridine (587). How-
ever, these explanations may be valid only at relatively
high pH (6.8 or higher), since at low pH (5.0), tyrosine
hydroxylation proceeds independently of L-DOPA (in the
presence of ascorbic acid as the only reductant). At acid
pH tyrosine loses its ability to bind at its allosteric site and
cresolase activity is not inhibited by excess of tyrosine
(145) and since DOPA oxidase activity is inhibited by
acidic pH the excess of L-DOPA could escape catalytic site
and diffuse to other cellular compartments. Tyrosinase
activity can also be inhibited by interactions with cys-
teine, by chelation of copper ions, by competitive occu-
pancy of the catalytic site (for example, by L-phenylala-
nine), by feedback inhibition by intermediates of melano-
genesis, and by direct inactivation by melanin pigment.
Tyrosinase activity in vitro is thus regulated by the local
chemical environment and, by the process of melanogen-
esis itself including its final product melanin.

3. TRP1 and TRP2 as modifiers of pathway velocity

Two additional TRPs stimulate eumelanin synthetic
rate: TRP1, product of TYRP1 (human) or b (mouse)
locus, and TRP2 product of TYRP2/DCT (human) and
slaty locus (mice). The gene for TYRP1 is 37 kb long and
contains eight exons separated by seven introns (515,
656). The TYRP1 proteins is encoded by exons 2–8, with
exon 1 containing a noncoding sequence (329, 700). How-

ever, functional analysis of the human TYRP1 promoter
showed that the downstream region, containing 5-un-
translated region (exon 1) and intron 1 had enhancer
activity for the gene (703, 704). Alternative splicing of
TYRP1 pre-mRNA generates at least two isoforms, one
coding for the correct protein and another containing a
deletion of 103 bp at the 5�-end of exon 8 to generate
soluble TYRP1 protein without transmembrane domain
because of frame shift (700). The potential for production
of multiple alternatively spliced isoforms had been pre-
dicted based on analysis of the TYRP1 gene sequence
(329). The gene for TYRP2 is 60 kb long and contains at
least eight exons and seven introns; all eight exons en-
code the final protein (84). Similar to TYR and TYRP1,
TYRP2 transcription and processing also generates sev-
eral alternatively spliced forms (356, 445, 585). These
include the correct TYRP2 mRNA, and the isoforms
TYRP2–6b (contains an in frame insertion of two novel
exons from intron 6), TYRP2-INT2 (retains an intron 2
with stop codon), TYRP2-LT (has an extended 3�-untrans-
lated end), and TYRP2–8b (contains a novel exon 8b
replacing exon 8) (356, 445, 585). TYRP2-LT codes for a
protein identical to TYRP2. TYRP2–6b codes a protein
with sequence almost identical to TYRP2 with the in-
frame insertion of 33 amino acids; most likely this repre-
sents a fully functional enzyme. The remaining TYRP2-
INT2 and TYRP2–8b isoforms correspond to truncated
enzymatically inactive soluble proteins without trans-
membrane domains (445, 585).

TYRP1 and TYRP2/DCT proteins share �40% amino
acid homology with tyrosinase, with which they also have
structural similarity (84, 329, 387, 515, 700). The proteins
contain an NH2-terminal signal sequence, EGF-like do-
mains, and other cysteine-rich region, two histidine-rich
metal binding domains, and a COOH-terminal transmem-
brane segment with short cytoplasmic tail. However, dif-
ferent exons code for different homologous segments in
tyrosinase and tyrosinase-related proteins (Fig. 6). In
TYRP2, the metal binding domain binds zinc, while in
TYRP1 it weakly binds iron. The COOH terminus and
transmembrane domains are crucial for targeting the en-
zyme to the melanosome. Newly synthesized TYRP1 and
TYRP2 have �55 kDa molecular mass and after posttrans-
lational folding are targeted to the Golgi apparatus for
further processing (262, 333, 335, 385). Mature and glyco-
sylated proteins of 70–75 kDa are sorted from the Golgi
apparatus to melanosomes. Because of the presence of
sequences homologous to EGF in TYRPs, they can form
multimeric complexes of 200–700 kDa, which may be
important in the regulation of melanogenesis (330, 452,
542), or in the synthesis and assembly of the melanogenic
apparatus (452, 736, 739).

In the mouse, TYRP1 acts as a DHICA oxidase to
generate indole-5,6-quinone-carboxylic acid (329, 336,
368). However, some authors have proposed that TYRP1

1166 SLOMINSKI, TOBIN, SHIBAHARA, AND WORTSMAN

Physiol Rev • VOL 84 • OCTOBER 2004 • www.prv.org

on A
ugust 24, 2014

D
ow

nloaded from
 



does not catalyze the reaction in humans exhibiting in-
stead tyrosine hydroxylase activity at low concentration
of substrate (62). TYRP1 activity appears to be important
for eumelanogenesis, as suggested by its lack or defective
expression in cells displaying an active pheomelanogenic
pathway (142, 722). An additional function of TYRP1 may
be the securing of appropriate processing of tyrosinase
(see above) and stabilization of its enzymatic activity and,
possibly, maintenance of melanosomal structure integrity
(262, 410, 656, 657). TYRP-2 acts as dopachrome tau-
tomerase (EC 5.3.2.3) catalyzing transformation of
dopachrome to DHICA (330, 843, 920). TYRP2, similar to
TYRP1, is considered to be a eumelanogenic enzyme and
also stabilizes tyrosinase activity. Most recently, a role for
TYRP2 in melanocyte survival has been demonstrated
(reviewed in Ref. 262). Thus both TYRP1 and TYRP2 can
act as enzymes modifying eumelanogenesis velocity, as
regulators/stabilizers of the eumelanogenic apparatus in
vivo and, perhaps, as regulators of other functions of the
melanocyte.

4. Tetrahydropteridines, phenylalanine, and tyrosine

hydroxylase as regulators of melanogenesis

A recent theory proposes that tetrahydropteridines,
phenylalanine, and tyrosine hydroxylase participate in the
regulation of the initial steps of melanogenesis in the
human skin (673). Thus in human epidermis synthesis of
melanin is dependent on the in situ L-tyrosine production
by phenylalanine hydroxylase (PH) (EC 1.14.16.1), which
in turn requires the presence of cofactor (6R)-L-erythro-
5,6,7,8-thetrahydrobiopterin (6BH4). Both PH and the full
system for the de novo synthesis and recycling of 6BH4

are expressed in human melanocytes (661, 670, 676).
Transport of L-tyrosine by keratinocytes (they surround
melanocytes in the epidermis) is very low, making its
relative availability to melanin through this pathway also
low (673). Conversely, in vitro experiments (673) had
demonstrated active transport of L-phenylalanine and in
situ turnover to L-tyrosine, thus contributing two-thirds of
the substrate needed for melanogenesis, whereas only
one-third originates from L-tyrosine transport. These find-
ings are consistent with L-tyrosine control of synthesis/
assembly and activity of melanogenic apparatus in amela-
notic Bomirski hamster melanoma cells and the lack of
such effect in Cloudman S-91 melanoma cells (735). The
latter express PH activity making them independent of
external tyrosine supply (77). This concept is also consis-
tent with the findings in human epidermis of proportion-
ality between 6BH4 levels, PH activity, and skin photo-
types. PH activity and 6BH4 are lowest in skin type I and
highest in type VI skin (661, 670). Production of the
cofactor in concentrations that would yield L-DOPA
needed for activation of Met-tyrosinase could alternately
be met by local tyrosine hydroxylase, since this is ex-

pressed in both human keratinocytes and melanocytes
(457). Indirect support for this concept comes from the
documentation in human skin of tryptophan hydroxylase
expression (749, 752, 757); this enzyme, similar to PH and
TPH, requires 6BH4 as its cofactor.

Lastly, a central role for 6BH4 in the initial regulation
of melanogenesis is emerging from studies in vitiligo pa-
tients who have a blockade in the recycling of that cofac-
tor originating from the deactivation of the rate-limiting
recycling enzyme 4�-carbinolamine dehydratase (DH)
(EC 4.2.1.96) by hydrogen peroxide (H2O2) (667, 671, 673,
674). As a consequence, the accumulated 7BH4 inhibits
PH reducing the supply of L-tyrosine, while 6BH4 can act
as allosteric inhibitor of tyrosinase (904). Conversely,
photo-oxidation of 6BH4 by UV-B to 7,8-dihydroxanthop-
terine or perhaps, its complexing with �-MSH lead to
activation of tyrosinase allowing melanogenesis to pro-
ceed (490, 579, 666). Yet to be explained is coincidence of
melanogenesis induction and induction of thioredoxin
reductase in black and brown guinea pigs and in murine
melanoma cells (664). Epidermal thioredoxin reductase
activities also increase linearly with increase in skin pho-
totypes (from type I to VI) (670).

5. Other melanogenesis-related proteins

Additional enzymatic regulators of melanogenesis in-
clude peroxidase (EC 1.11.1.7), PMEL 17/HMB45/gp100/
SILV protein(s), and catechol-O-methyltransferase (COMT)
(EC 2.1.1.6) (29, 387, 530, 531, 597, 598, 765). Peroxidase
catalyzes the oxidation of DHI and DHICA (597, 598). The
enzyme responsible for O-methylation of DOPA and its
dihydroxyindolic intermediates, COMT, is present as sol-
uble and membrane-bound isoforms (765). Its proposed
role is inactivation of toxic intermediates of melanogen-
esis, and thus it may regulate the velocity of the early
steps of melanogenesis (765). Indolic melanogens can be
conjugated with glucuronic and sulfuric acid to form in-
dolic sulfates and glucuronate complexes (597, 598).

The human gene PMEL 17/HMB45/gp100/SILV maps
to chromosome 12q12-q13 and is homologous to the silver
locus in mice (387, 388). The gene comprises 11 exons and
10 introns spanning 9.1 kb; processing of the transcribed
mRNA generates at least two alternatively spliced iso-
forms coding for PMEL17 and GP100 proteins (515, 773).
PMEL17 is a 668-amino acid protein with a potential
signal peptide and a single transmembrane domain near
the COOH terminus (515, 773). GP100 is a 661-amino acid
protein with an �100 kDa molecular mass that differs
from PMEL17 by the presence of one substitution
(P274L), and by the deletion of the heptapetide
(588VGILLT594) located before the transmembrane do-
main. Both glycoproteins are recognized by HMB45
monoclonal antibodies, contain cysteine, and histidine-
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rich regions and are associated with the melanosomal
membrane and matrix. They share the ExxPLL motif (pro-
posed as melanosomal targeting signal) and cysteine and
histidine-rich regions (reviewed in Refs. 515, 773).
PMEL17 catalyzes the polymerization of DHICA to mela-
nin (109). In addition, PMEL17/GP100 may act in melano-
somes as scaffold for deposition of melanin, stabilizing
melanin intermediates (262). GP100 and PMEL17 tran-
scripts are expressed in many tissues, but expression of
the protein is restricted to normal and malignant melano-
cytes, indicating tight translational regulation (515, 773).

Other possible regulators of melanogenesis that re-
main to be characterized and cloned include DHI inhibi-
tory factor, which decreases the rate of DHI transforma-
tion to melanin, and stablin which prevents autoxidation
of DHICA to melanin (515, 561, 573). Among the enzymes
indirectly affecting melanogenesis are glutathione reduc-
tase and glutathione peroxidase that regulate the levels of
reduced and oxidized glutathione (515, 597, 598). Catalase
regulates H2O2 removal; H2O2 is a potent inhibitor of
tyrosinase (672).

Macrophage migration inhibitory factor (MIF) is an
additional modifier of melanogenesis, which expresses
D-dopachrome tautomerase activity (81, 262, 467, 638).
MIF is widely expressed in different tissues and trans-
forms both D-dopachrome, DOPAminechrome, or its de-
rivatives to indole compounds that serve as precursors to
melanin or neuromelanin (262). According to Sonesson et
al. (775), there may be two enzymes expressing dopa-
chrome tautomerase activity, one is D-dopachrome tau-
tomerase (DDT) that transforms D-dopachrome to DHI
(523) and the other is MIF itself transforming D-dopa-
chrome to DHICA. Although it is still undetermined
whether these activities are expressed by separate pro-
teins or the same protein, it is already recognized that in
additon to its cytokine function, MIF can also act as
cytoprotector of immunomodulator (81, 262, 638).

C. Extrapigmentary Functions

of Melanogenesis-Related Proteins

Tyrosinase and gp100 are MRPs that represent recent
diagnostic markers and therapeutic additions to the man-
agement of melanoma (reviewed in Refs. 97, 716, 718).
Tyrosinase, TYRP-1, TYRP-2, GP100, and melanosome
specific MART 1 are classified as major histocompatibility
complex (MHC) class I-restricted tumor antigens (or
MHC-I and -II in case of tyrosinase), thus being potentially
useful in melanoma diagnosis therapy (reviewed in Refs.
97, 716, 718, 869). Therapeutic applications would involve
the generation of specific peptides to activate a T-lympho-
cyte response against melanoma cells. Such a T-cell im-
mune response could however be highly variable because
MRP-derived peptides can be recognized by T cells in

association with multiple haplotypes including HLA-A2,
HLA-A24, HLA-B44, HLA-A1, HLA-DR4, and HLA-DR15
(651, 718, 760, 766, 869). MRP antigens may also represent
immune targets for the melanocyte destruction in vitiligo
(255, 869), or for the initiation of alopecia areata (558).

MRPs also have indirect extrapigmentary functions
related to their catalytic activity with production of
L-DOPA and other intermediates of melanogenesis (736,
739, 743, 746). Thus L-DOPA and products of its oxidation
inhibit the immune system (729, 743), whereas inhibition
of T-cell response against melanin-producing fungi is de-
pendent on melanogenesis (302, 868). Melanin precursors
have genotoxic and mutagenic effects, which may be
amplified by the free radicals and reactive oxygen species
generated during melanogenesis. This mutagenic environ-
ment in melanoma cells may lead to genetic instability
and appearance of new, more aggressive cell populations
resistant to therapy (743). Melanogenesis and its interme-
diates can switch cell metabolism from aerobic to anaer-
obic glycolysis, stimulate pentose phosphate pathway,
and/or inhibit glycoprotein phosphorylation (683, 684,
727). Through these mechanisms melanogenically active
melanosomes may affect functions and responses of ker-
atinocytes or macrophages (746).

Because of the sharing of L-DOPA precursor, mela-
nogenesis and catecholaminogenesis may be subject to
potential interactions. For example, the presence of do-
pamine in TH null mice fetuses suggests an alternative
route to dopamine synthesis not mediated by TH. In this
regard, the presence of tyrosinase in pigmented TH null
mice has been associated with higher tissue levels of
catecholamines compared with albino TH null mice (621).
This potential TH-independent source of dopamine is con-
sistent with the observation of age-related decreases in
dopamine production in the periphery during the early
postnatal period in TH-null pigmented mice (161). Tyrosi-
nase-dependent dopamine production could also occur
via additional decarboxylase activities to convert L-dopa
to dopamine. Reportedly the incidence of Parkinson’s
disease is lower in humans with heavier pigmentation
(630). Also, sensitivity to the dopamine agonist apomor-
phine is greater in mice with reduced, or no tyrosinase
activity (e.g., albino mice) (630, 799). Tyrosinase has in-
deed been detected in the brain (826), and the infusion of
tyrosinase into the striatum may increase striatal dopa-
mine levels (16).

TYRP-2/DCT is expressed in migrating melanoblasts
and in the telencephalon of mouse embryos, where the
tyrosinase and TYRP-1 genes are not normally expressed
(785). DCT mRNA is also expressed in glioblastoma mul-
tiforme (797) and in retinoblastomas (846). It is therefore
conceivable that the DCT expressed in these tissues may
be responsible for functions other than melanin produc-
tion, such as detoxification of metabolites derived from
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DOPA (785). This would be consistent with a postulated
role for TYRP2 in melanocyte survival (262).

III. MECHANISMS OF REGULATION

OF MELANOGENESIS

A. Transcriptional Regulation

The gene for tyrosinase contains at least one major
and three minor transcription starting sites (515); the
promoter region contains TATA and CAAT boxes, several
potential micropthalmia-associated transcription factor
(MITF) binding sites including M-boxes, E-boxes, and
tyrosinase distal element (TDE), five AP-1 and two AP-2
binding sites for the phorbol ester-inducible enhancer-
binding protein AP-1 (activator protein-1), glucocorticoid
responsive elements (GRE), UV responsive elements
(URE), Oct-1 boxes (octomer element binding POU do-
main transcription factors), thyroid and retinoic acid-like
responsive elements (TRE and RER), tyrosinase ele-
ment-1 (TE-1), high mobility group protein (HMG-1) bind-
ing element, SP1 element, and two DNase I hypersensitive
sites (HS-sites) embedded within a scaffold/matrix attach-
ment region (S/MAR) (47, 167, 197–199, 358, 387, 390, 489,
703, 704). Of interest is the reported absence of exact
sequence of cAMP responsive element (CRE) in the pro-
moter region of human and mouse tyrosinase. However,
in humans the first HS binding site (HS1) contained a
palindromic sequence resembling the binding motif to
both CREB and AP-1. A palindromic sequence resembling
binding motifs for CREB was also identified in mice, but
competition and immunoprecipitation studies showed
that it did not bind CREB (197). Most recently, it was
reported that the human tyrosinase promoter contains the
hepatocyte nuclear factor (HNF-1) consensus binding se-
quence, which is activated by dimerization of the cofactor
of hepatocyte nuclear factor-1/HNF-1 (DcoH/HNF-1)
(663).

The TYRP1 gene contains several potential alternate
transcription initiation sites with promoter region struc-
turally different from tyrosinase, e.g., unlike tyrosinase it
does not contain TATA or CCAAT boxes (48, 72, 329). The
5�-upstream region of TYRP1 contains several positive
and negative regulatory elements including the M- and
E-boxes, Oct-1, and two melanocyte specific elements in
mouse but not humans (MSEu and MSEi) and lacks the
CRE sequence (47–49, 72, 196, 329, 515, 700, 703). The
promoter region of TYRP2 contains in addition to M- and
E-boxes, CRE-like sequences, AP-2, interleukin-1-respon-
sive elements of the interleukin-6 gene (NF-IL6) and
DOPA tautomerase distal enhancer 1 (DDE1) (13, 47, 515,
921). The promoter/enhancer structures of other MRPs
such as SILV/PMEL17/GP100 also contain E-box ele-
ments. Of interest, the promoter region of mouse and

human MC1R has also been shown to contain an E-box
element (21).

Most significant is the presence of motifs such as
M-boxes, E-boxes, TDE, TPE, in the promoter regions
of MRPs, that constitute binding sites (with a core
CANNTG motif) for a large family of transcription fac-
tors sharing a basic helix-loop-helix structure required
for DNA binding and dimerization. The important rep-
resentative of the basic helix-loop-helix-leucine zipper
(b-HLH-ZIP) is MITF that plays a fundamental role in
the transcriptional regulation of melanogenesis (see
sect. VII). Its binding to promoter regions of MRPs is
necessary for the melanogenic activity of the melano-
cytes and the development of melanocytes lineage (see
below). Although other b-HLH-ZIP proteins such as
TFE3 or TFEB have been show to play a role in regu-
lation of melanogenesis in cell culture (860), there is no
genetic evidence that various members of this family
including USF, Myc and Max, and various TFE3 family
members are involved in the developmental regulation
of pigmentation (99). A more complex role in transcrip-
tional regulation (positive and negative) of melanogen-
esis-related genes is played by the member of the class
III POU binding protein Brn-2/N-Oct3 (160, 823). The
negative transcriptional regulation of TRP1 is mediated
by brachyury-related transcription factor (TBX2), while
the opposite action is executed by PAX3 (protein iden-
tical to MSF) through binding to MSE (98, 196). The
positive involvement of the latter is expressed in the
phenotypic pigmentation of Waardenburg syndrome
types 1 and 3 in which PAX3 is mutated (816, 817). In
murine melanoma cells, downregulation of PAX3 re-
sults in melanogenesis, with the shut-off through the
probable involvement of Mitf promoter silencing (343).
Thus regulation of MRP gene expression is mediated by
positive and negative transcriptional regulators of
which MITF is essential. It must be noted that regula-
tion of gene expression at the mRNA level represents
only the initial step; the final regulation of melanin
synthesis appears to be predominantly controlled by
posttranslational mechanisms.

B. Intracellular Signal Transduction Pathways

Figure 7 shows the major signal transduction path-
ways involved in the positive regulation of melanogenesis
with cAMP as the critical factor. The fundamental role of
cAMP in the regulation of melanogenesis and melano-
cytes proliferation was initially recognized in mouse mel-
anoma cells (415, 568, 569, 899–901). Subsequent studies
confirmed stimulation of melanogenesis by factors raising
intracellular concentration of cAMP through receptor-
mediated activation of adenylate cyclase, inhibition of
phosphodiesterase, or transmembrane delivery of modi-
fied cAMP into the cell (92, 515).
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The mechanism of cAMP regulation of melanogen-
esis involves the activation of protein kinase A (PKA),
which then phosphorylates enzymes, ion channels, and
several regulatory proteins. Involvement of PKA in the
posttranslational regulation of melanogenesis was
clearly demonstrated by Pawelek and co-workers (373,
568, 569, 899, 900) and was confirmed by others (190,
264, 515, 552). In addition, PH and TH hydroxylation
phenylalanine to tyrosine and tyrosine to DOPA, re-
spectively, are controlled by the PKA-dependent phos-
phorylation of regulatory serine residues (790). Regu-
lation of transcriptional activity by activated PKA in-
volves phosphorylation of cAMP responsive element
binding protein (CREB) and CREB binding protein
(CBP). Phosphorylated CREB interacts with CBP to
activate the (566) expression of MITF throughout the
CRE in the promoter region of the gene (648, 701, 889).
MITF in turn regulates transcription of genes coding
MRPs through interactions with M- and E-boxes
present in the promoter regions of tyrosinase, TYRP1,
and TYRP2. Because CRE is absent from the promoter
of tyrosinase and TYRP1 genes, the transcriptional con-
trol of melanogenesis by cAMP is coordinated predom-
inantly by MITF (47, 48, 423, 648, 701, 889). However,
transcription of TYRP2 can potentially be activated
through direct activation of CRE by CREB (49).

cAMP also modifies other pathways controlling me-
lanocyte differentiation and proliferation, for example,
the phosphatidylinositol (PI) 3-kinase pathway with its
downstream regulatory element p70S6 kinase (92, 94, 240,
241). Inhibition of this pathway stimulates melanogenesis,
and the pathway can be partially inhibited by cAMP (92–
94). cAMP may also regulate dendritogenesis and possibly
melanogenesis through activation of the Rho family of

small GTP-binding proteins (92, 93). Of interest, some
authors have proposed that cAMP can also inhibit mela-
nogenesis through PKA-independent p21Ras activation
(92). Ras would activate B-raf kinase and consequently
mitogen-activated protein (MAP) kinases ERK1 and
ERK2. MAP kinases phosphorylate MITF leading to its
ubiquitinilation and degradation, thus removing a major
transcriptional regulator of MRP genes expression (92,
168, 340). In addition, activation of ras oncogene inhibits
melanogenesis in normal and malignant melanocytes
(168, 245, 844).

Another signal transduction pathway important in
the regulation of melanogenesis is represented by pro-
tein kinase C (PKC) (213, 217, 551, 552, 555). Thus
diacylglycerol (endogenous activator of PKC) can stim-
ulate melanin synthesis both in cell culture and in vivo
(10, 217), while melanogenesis is blocked by PKC in-
hibitors or cellular depletion of PKC (48, 551, 552).
Accordingly, 12-O-tetradecanoylphorbol 13-acetate (TPA)
would have an initial activatory effect on melanin synthe-
sis (activation of PKC) and a long-term inhibitory effect
from PKC depletion in cells after the TPA treatment. The
major PKC isoform involved in the regulation of melano-
genesis is PKC-� (551), which can also activate tyrosinase
through phosphorylation of serine residues in its cyto-
plasmic domain (552). In addition, the association of ac-
tivated PKC-� with melanosomes through interaction
with a membrane receptor for the activated PKC-�
(RACK-1) has been reported. It is possible that cross-talk
between PKC and PKA pathways could amplify their mel-
anogenic effect through cAMP-dependent stimulation of
genes transcription (including PKC) (551). Other PKC
isoforms potentially involved in the regulation of melano-
cyte differentiation and proliferation are �, �, �, and �
(551, 552).

Additional pathways that have been involved in the
positive regulation of melanogenesis include those acti-
vated by nitric oxide (NO) and cGMP (628) as well as
thymidine dimers (165, 166, 212). Thus the melanogenic
effect of UV radiation could be connected with local
production of NO and activation of guanylate cyclase with
subsequent accumulation of cGMP in the melanocytes; in
fact, inhibition of NO and cGMP production blocked the
melanogenic effect of UV radiation (628). Thymidine
dimers and small single-stranded DNA fragments
(ssDNA) can also stimulate melanogenesis in cell culture
and in vivo. This effect is dependent on the sequence and
length of the oligonucleotides, regulated at both transcrip-
tion and translation of MRPs levels, and involved ampli-
fication of the melanogenic effect of �-MSH (165, 166, 212,
552). These pigmentary effects of small oligonucleotides
could follow a pathway functionally similar to the SOS
response system of bacteria (165).

FIG. 7. Intracellular signal transduction pathways regulating mela-
nogenesis. ?, Detailed involvement of this pathway needs further study;
DAG, diacylglycerol; PKC, protein kinase C; PI3-K, phosphatidylinositol
3-kinase; PKA, protein kinase A; NO, nitric oxide; PKG, protein kinase G.
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C. Dual Function of L-Tyrosine and L-DOPA:

Reaction Substrates and Bioregulators

1. Overview

L-Tyrosine and L-DOPA have long been known to be
substrates of the melanogenic pathway that determines their
metabolic fate; however, they also possess a recently eluci-
dated and important role as positive regulators of melano-
genesis (reviewed in Ref. 739). Thus, in hamster amelanotic
and melanotic melanoma cells, both L-tyrosine and L-DOPA
stimulate, induce, or regulate various elements of the mela-
nogenic apparatus by overlapping though distinct mecha-
nisms (720, 721, 732–735). When Bomirski hamster mela-
noma cells were cultured in media relatively low in tyrosine
(10 �M), L-tyrosine supplements produced concomitant in-
creases in melanin synthesis and tyrosinase activity (rate-
limiting step in the melanogenic pathway) (735). Neverthe-
less, in parallel experiments perfomed with mouse Cloud-
man S91 melanoma cells L-tyrosine, while also increasing
melanin pigmentation, had no effect or even decreased ty-
rosinase activity (735). Thus, depending on the experimental
model, L-tyrosine can act as a stimulator or modifier of
melanogenic apparatus or, only as substrate increasing mel-
anin content without affecting the pathway enzymes. Fur-
ther studies in human melanocytes system have shown that
L-tyrosine and L-DOPA are necessary for the proper folding
of tyrosinase in the ER, protecting it from entering the
degradation pathway. L-Tyrosine and L-DOPA enhanced ty-
rosinase exiting from the ER, its carbohydrate modifications
in the Golgi apparatus, and its transport into melanosomes
increasing melanin pigmentation (244, 246, 247, 249).

2. L-Tyrosine and L-DOPA as positive regulators

of subcellular apparatus of melanogenesis

L-Tyrosine stimulates tyrosinase activity in a dose-
dependent manner in three different lines of hamster
melanoma, with the slope being determined by the mela-
nogenic potential of the cell line (Fig. 8) (735). Thus, in
melanotic lines, tyrosinase activity reaches its peak at
optimal media tyrosine concentration (200 or 400 �M),
and decreases at pharmacological concentrations (400 or
600 �M). The decrease is not observed in amelanotic
cells. Stimulation of tyrosinase activity by L-tyrosine is
also seen in human malignant melanocytes (472, 895),
normal epidermal melanocytes (603), and C57BL/6 mouse
melanocytes with p locus mutation (635). L-DOPA shows
a similar dose-dependent effect on tyrosinase with peak
of tyrosinase stimulation at 25–50 �M, and decreases in
enzyme activity at higher concentrations (100 or 200 �M)
(721, 735). In Cloudman S91 melanoma cells, prestabili-
zation of L-DOPA by the addition of phosphate (to pro-
duce phospho-L-DOPA) was required to express the dose-
dependent stimulatory effect on tyrosinase activity and
melanin pigmentation through amplification of the MSH

receptor system (475). Thus, in Cloudman melanoma
cells, L-DOPA itself does not affect melanogenesis (475),
although at very low concentrations it does stimulate cell
proliferation (560). In in vivo experiments, phosphory-
lated L-DOPA also stimulates skin melanin pigmentation
(7), acting synergistically with UVB (560). Similarly, top-
ical application of L-tyrosine in Skh:HR2 mice amplified
the cutaneous melanogenic response to UVB (870). This is
consistent with L-tyrosine acting as an inducer of melano-
genesis in amphibian embryonic cells (403, 438). A stim-
ulatory effect of L-tyrosine on differentiation of cultured
frog melanophores has also been reported (189).

In hamster amelanotic cells L-tyrosine and L-DOPA
induced rapid increases of tyrosinase activity and also in
melanosomes and melanin synthesis (Fig. 9); the effect
was specific since under the same conditions the enanti-
omers (D-isoforms) or related aromatic amino acids had
little or no effect, and it also required protein synthesis
(735). It was positively excluded that these actions would
be related to transformation of L-tyrosine and L-DOPA to
catecholamines, or to activation of adrenergic or dopami-
nergic receptors (293). L-Tyrosine and L-DOPA acted
through related but distinct mechanisms (720, 721, 732–
734, 748), with L-tyrosine inducing both melanosomes
synthesis and tyrosinase translocation from the trans-
Golgi reticulum (TGR) to melanosomes, while L-DOPA
primarily increased tyrosinase leading to its accumulation
in the TGR. Their effects on tyrosinase gene transcription
differ, e.g., L-tyrosine has no effect on tyrosinase mRNA
by, while L-DOPA produces an initial increase in tyrosi-
nase mRNA followed by a decrease below control levels
(720, 721). The latter effect could be due to tyrosinase-
mediated oxidation of L-DOPA generating toxic interme-
diates of melanogenesis, which would in turn shut-off
tyrosinase gene expression as protective mechanism
against self-destruction (721).

Phenylthiourea (PTU) is a nontoxic inhibitor of mel-
anogenesis that inhibits stimulation of tyrosinase by
L-tyrosine, without affecting L-DOPA stimulation in ham-
ster amelanotic melanoma cells (734). However, L-ty-
rosine does stimulate premelanosome synthesis predom-
inantly at stage II of development in PTU-treated cells. In
the same system, melanogenesis induced by L-DOPA in
the absence of L-tyrosine was rate limited by inadequate
melanosome synthesis (735, 734). Since the formation of
melanosomes precedes the induction of melanogenesis,
L-tyrosine may have a crucial role in the induction of the
subcellular apparatus of melanogenesis, e.g., enhancing
both melanosome synthesis and translocation of tyrosi-
nase from the TGR (Fig. 9) (735, 734). In mouse melano-
cytes with p mutation, L-tyrosine stimulates melanosome
production, maturation, and tyrosinase redistribution
(280, 635), while in human normal and malignant melano-
cytes L-tyrosine enhances tyrosinase exit from the ER, its
modifications in Golgi, and its transport to melanosomes,
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resulting in increased melanin pigmentation (247). There-
fore, L-tyrosine may act as subcellular initiator of melano-
genesis, while L-DOPA produced within melanosome
would act at a later stage increasing further tyrosinase
concentration (736). L-DOPA would then represent a sec-
ond messenger to tyrosine in the in vivo regulation of
tyrosinase synthesis and processing (734). Furthermore,
tyrosinase, with its tyrosine hydroxylase (producing
L-DOPA) and DOPA oxidase activities, would act as a
regulatory protein for the subcellular apparatus of mela-
nogenesis, of which it is itself an integral component
(734), participating in the regulation of melanocyte me-
tabolism during active melanogenesis (reviewed in Refs.
736, 739). Acting in concert, L-tyrosine, L-DOPA, and ty-
rosinase regulate the melanogenic apparatus and the
overall physiology of the melanocyte in a stochastic fash-
ion. The latter would depend on changes in the phosphor-
ylation/dephosphorylation pattern (727).

3. L-Tyrosine promelanogenic effect and p locus

Mutations in pink-eyed dilution gene (P) result in a
common form of human albinism, OCA2, and in the pink-
eyed dilution phenotype in mice (72, 524, 708, 792). These
mutations are expressed as decreased pigmentation of
hair, skin, and eyes. The p gene product is a transmem-
brane protein (204, 620) thought to have among various
functions (see previous sections) that of melanosomal
proton pump (78, 601). Patients with mutations at the p
locus have defective processing of tyrosinase and tyrosi-
nase-related proteins with intracellular misrouting, prote-
olysis, and/or secretion to the extracellular environment
(249, 451, 840). These abnormalities result in decreased
tyrosinase activity and MRP protein concentration with
hypopigmentation. Melanosome number and differentia-
tion levels are decreased, and melanosomal utrastructure
is also abnormal (280, 539). Accordingly, p protein acts
directly or indirectly as coordinator of the MRPs routing
to melanosomes.

The pigmentary deficit of the OCA2 can be overcome
by L-tyrosine, which stimulates melanin synthesis even in
amelanotic melanocytes (reviewed in Ref. 539). In fact,
mouse melanocytes containing mutations at the p locus
show partial correction of the defect by properly targeting
tyrosinase and TyrP1 to melanosomes upon increasing
the concentration of L-tyrosine (280, 451, 635), similar to
its effects in hamster amelanotic cells (see above). In the
latter model, tyrosine treatment increased the number of

FIG. 8. L-Tyrosine and L-DOPA regulate tyrosinase activity in cul-
tured melanoma cells. The cells were cultured in Ham’s F-10 medium
(low in tyrosine) for 24 h (D and E), 48 h (A–C), or as noted on the
x-axis; media concentrations of L-tyrosine and L-DOPA are as presented
for A–E. F and G: E, 200 �M L-tyrosine; ■ , 25 �M L-DOPA; F, control. At
indicated time points the cells were harvested and lysed, and tyrosinase
activity was measured. [Modified from Slominski et al. (735).]
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melanosomes at later stages of maturation as well as
activity and concentration of tyrosinase and TyrP1 with
their rerouting to melanosomes (280, 451, 635). This up-
regulation of melanogenesis appears to be mediated at the
posttranscriptional level (635, 720). Studies in cultured
melanoblasts and melanocytes from C57BL/10 mice show
that L-tyrosine also increases intracellular concentration
of c-kit, TyrP1, and TyrP2 protein in both nonmutant (PP)
and mutant (pp) cells (280). L-Tyrosine, nevertheless, in-

hibits proliferation of PP melanocytes while stimulating
proliferation of pp melanocytes.

4. L-Tyrosine and L-DOPA regulate MSH

receptor expression

L-Tyrosine or phosphorylated isomers of L-DOPA
stimulate MSH receptor activity in hamster and mouse
melanoma cells (475, 560, 732, 748). In normal human

FIG. 9. Effect of L-tyrosine and L-
DOPA on melanosome synthesis and
proteins routing. Cells were cultured for
2 days in the absence (A, B, G) or pres-
ence of L-tyrosine (C, D, H) or L-DOPA
(E, F), then fixed for transmission elec-
tron microscopy (A, C, E) or processed
for ultrastructural dopa-oxidase (B, D, F)
or acid phosphatase (G, H) histochemis-
try. G, Golgi apparatus; asterisks, mela-
nosome; arrows, products of DOPA reac-
tion in TGN (F) or acid phosphatase re-
action in endoplasmic reticulum (G and
H). [Modified from Slominski et al.
(735).]
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epidermal melanocytes, tyrosine levels have been shown
to regulate the melanogenic response to �-MSH (681). In
amphibian melanoblasts, L-tyrosine acts synergistically
with MSH in stimulation of melanogenesis (188). Phos-
phorylated isomers of L-DOPA increase MSH receptor
expression in mouse melanoma cells and stimulate the
melanogenic response to �-MSH peptide (475). Similarly,
in hamster melanoma cells, L-tyrosine but not L-DOPA
stimulates cell surface MSH receptor expression, en-
hances level of tyrosinase stimulation by MSH, and re-
duces positive cooperativity among cell surface MSH re-
ceptors (732, 748). The effect appears to be specific for
the MSH receptor, because it does not affect expression
of the unrelated insulin receptor (730). Stimulation of
MSH receptors does require prolonged exposure to the
factors tested (475, 732, 748), and the lack of effect of
L-DOPA is most likely due to its oxidation. In hamster
amelanotic melanoma, stimulation of MSH receptor activ-
ity is maximal when L-tyrosine has induced the full mela-
nogenic potential of the cells (748). Interestingly, in other
melanoma models, stimulation of melanogenesis in-
creases expression of MSH receptors (726). L-Tyrosine
does not change MC1 receptor mRNA concentrations in
hamster melanoma (Slominski, unpublished data), while
in human melanoma induction of melanogenesis by
DMEM increases MC1 mRNA concentration (726).

5. L-Tyrosine and L-DOPA as

“hormonelike bioregulators”

The overall actions of L-tyrosine and L-DOPA in the
pigmentary system strongly support an additonal role for
these melanin precursors as hormonelike bioregulators,
and thus melanocytes would regulate L-tyrosine and
L-DOPA activity affecting both production and metabolic
consumption (736). Such roles require support from the
identification and characterization of receptors for those
amino acids (739), since their dose- and time-dependent
actions and stereoselectivity are consistent with receptor-
mediated mechanisms. Indeed, cell surface and nuclear
binding sites for L-tyrosine or L-DOPA have been detected,
and the binding was saturable, specific, and reversible
(715, 754). Cross-linking experiments also identified cell
surface proteins binding specifically L-tyrosine (5 proteins
of 55, 45, 40, 30, and �20 kDa) and L-DOPA (4 proteins of
of 55, 30, 25, and �20 kDa) (715, 739, 754). These proteins
were neither adrenergic nor dopaminergic receptors or
amino acids carriers. Potential candidates include p pro-
tein, alternatively spliced products of tyrosinase or tyrosi-
nase-related proteins, blurring the classical distinction
between specific transporter, enzyme, and receptor. Thus,
depending on L-tyrosine and L-DOPA concentrations,
membrane-bound binding proteins may allow formation
of melanosomes and/or delivery of elements for melano-
genesis via intracellular or endocytic pathways (739). Be-

cause melanogenesis-related proteins have the cysteine-
rich sequences characteristic of peptide hormones, they
may regulate melanocyte function through binding to pro-
teins, acting at the translational or transcriptional levels
(739). Identification of cytosolic and nuclear binding sites
for L-DOPA but not L-tyrosine suggests the potential for an
additional nuclear receptor for this relatively short-lived
molecule, allowing coordination of intracellular functions
in an intracrine fashion (739). In lower organisms (uni- or
multicellular), there are indications of L-tyrosine and
L-DOPA receptor expression; in mammalian systems,
L-tyrosine and L-DOPA may act as as neurotransmitters
(reviewed in Refs. 736, 739). Definitive establishment of
the concept will require the testing of primary epidermal
and follicular melanocytes for expression of putative
L-tyrosine and L-DOPA receptors.

With regard to the metabolic effect of L-DOPA, this
consists of in vitro inhibition of glycoproteins phosphor-
ylation (727); in isolated cells, L-DOPA stimulates the
pentose phoshate pathway (683) and switches the energy
metabolism from aerobic to anaerobic glycolysis (682).

D. Summary

Therefore, key elements in the regulation of melano-
genesis are represented by tyrosinase and TYRPs. The
complexity and precise control of melanogensis are evi-
dent by the presence in the genes of motifs for binding
sites of a large family of transcription factors. At the
intracellular level, the major regulatory pathway involves
the common mediator cAMP, although PKC is also in-
volved. A new turn in the regulatory process has been
introduced by cumulative evidence indicating that L-ty-
rosine and L-DOPA, besides serving as substrates for mel-
anin, are also bioregulatory agents. Evidence obtained
with the improvement of OCA2 by tyrosine strongly sup-
ports this concept.

IV. HORMONAL STIMULATORS OF

MELANOGENESIS AND THEIR RECEPTORS

A. G Protein-Coupled Receptors and Ligands

1. Melanocortins, ACTH, and melanocortin receptors

A) OVERVIEW OF MELANOCORTINS PHENOTYPIC EFFECTS. I)

Melanogenic effect in vivo. The fundamental role of mela-
nocortins (MSH) and adrenocorticotropins in the regula-
tion of melanogenesis was established during the last
century (157, 242, 412, 514, 559, 561, 569), culminating in
the definition of their regulatory role with purification and
full sequencing of the �- and �-MSH peptides (412). Struc-
turally, MSH peptides (that include �-MSH, �-MSH, and
�-MSH peptides) have in common with ACTH the amino
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acid sequence -Tyr-x-Met-x-His-Phe-Arg-Trp- containing
the tetrapeptide His-Phe-Arg-Trp critical for melanotropic
activity (157, 242). There is consensus that the proopio-
melanocortin (POMC) peptides with significant melano-
genic activity are ACTH, �-MSH, and �-MSH (see below).

Initial experiments in amphibians determined that �-
and �-MSH induced darkening of the skin (reviewed in
Refs. 242, 412). In mammalian systems, such as rodents,
MSH peptides do stimulate both melanogenesis and the
switching of the pheo- to the eumelanogenic pathway
(127, 157, 209, 225, 242, 515, 813). In several strains of
adult mice as well as hamsters, �-MSH specifically stim-
ulates follicular melanogenesis, depending on genotype
and hair cycle (89, 90, 127, 209, 225, 242, 418, 433, 515).
For example, e/e mice (recessive for the E locus encoding
MC1 receptor) are unresponsive to MSH pigmentary ac-
tion (813), although �-MSH does stimulate tyrosinase ac-
tivity at the transcriptional, translational, or posttransla-
tional level depending on the phase of hair cycle (89, 90,
157, 209, 242, 515). This is consistent with hair cycle
restricted expression of melanogenesis-related genes,
protein concentration, and enzymatic activity (737, 741,
745). �-MSH also stimulates tyrosinase activity, as ob-
served in skin of newborn Syrian golden hamsters as well
as black and brown mice (588) and has actual melano-
genic activity in adult guinea pigs and hairless mice (63,
64). Overall, the promelanogenic effect of MSH peptides
has been documented in a number of species (127, 157,
209, 242, 515).

In humans, the systemic administration of �-MSH,
�-MSH, or ACTH stimulates skin pigmentation, predomi-
nantly in sun-exposed areas (414, 419). Clinical observa-
tions have shown that the pathologically increased levels
of plasma ACTH in Addison disease, or the excessive
ACTH production by tumors (Nelson syndrome), are ac-
companied with hyperpigmentation and skin atrophy (re-
viewed in Refs. 181, 515, 759). Prolonged administration
of synthetic ACTH in humans also induces skin atrophy
and hyperpigmentation as well as hypertrichosis (re-
viewed in Refs. 181, 762) and elevated serum concentra-
tions of �-MSH with skin pigmentation (576). In most
patients with ACTH/�-MSH excess hyperpigmentation is
generalized, but most prominent in sun-exposed areas. In
contrast, patients with pituitary POMC gene mutations
leading to defective production of the POMC protein have
red hair pigmentation in addition to early onset of obesity
and adrenal insufficiency (reviewed in Ref. 762). Finally,
MC1 receptor polymorphism has been linked with skin
and hair pigmentation, and mutations reducing MC1 re-
ceptor activity lead to lighter skin pigmentation and red
hair phenotype (660, 792).

II) Melanogenic effects in cell cultures. Melanogen-
esis is a highly regulated process modified by postransla-
tional, translational, or transcriptional mechanisms (157,
242, 487, 515, 559). In melanoma cells both �- and �-MSH

stimulate melanogenesis activating tyrosinase as well as
post-dopa oxidase steps (157, 242, 515, 561, 573). Studies
in rodent malignant and normal melanocytes have uncov-
ered the role of MSH receptors in the regulation of the
melanocyte functions, acting via cAMP-dependent path-
ways (157, 242, 277, 412, 487, 515, 559, 561, 562, 564, 565,
573, 570, 572, 574, 733). In rodent malignant melanocytes,
�-MSH and �-MSH are more potent than ACTH in stimu-
lation of melanogenesis (157, 487, 559). The effect of MSH
on cell proliferation is variable and depends on cellular
genotype (157, 303, 487, 515, 559, 562, 564, 566, 567, 570,
707); for example, MSH inhibits proliferation in amela-
notic cells, indicating that this effect is unrelated to pro-
duction of toxic intermediates of melanogenesis (487,
559, 733). In addition, MSH stimulates dendrite produc-
tion through a pathway independent from that regulating
melanogenesis, although still cAMP mediated (515, 733).
Similar MSH effects, e.g., stimulation of melanogenesis,
dendrite formation, and stimulation of cell proliferation
are also seen in normal cultured mouse melanocytes (242,
277, 515).

Affinity of ACTH or MSH peptides for MC1 receptor
differs according to the species investigated. For exam-
ple, cloned rodent MC1 receptor has high affinity for
�-MSH, but low for ACTH and �-MSH, and even lower for
�-MSH (127, 515). In cultured rodent cell lines, �- or
�-MSH are more potent that ACTH in stimulation of mel-
anogenesis (402). The human MC1 receptor affinity is
equally high for �-MSH and ACTH, and lower for �-MSH
and �-MSH. The MC2 receptor exhibits absolute specific-
ity for ACTH. Mutations in the MC1 receptor that produce
unresponsiveness of epidermal melanocytes to MSH re-
sult in the red hair phenotype (515, 851). In cultured
human melanocytes, �-MSH, �-MSH, and ACTH at con-
centrations in the nanomolar range or lower stimulate
melanogenesis, cell proliferation, dendrite formation, and
cAMP production (2, 303, 304, 798). In some studies ACTH
was more potent than MSH (303, 304), while in others
both peptides were equipotent (2, 798). �-MSH, which
stimulates cAMP production, had no significant effect on
melanogenesis or proliferation in human melanocytes
(798), and low melanogenic activity in murine and ham-
ster malignant melanocytes (723), and in frog and lizard
melanophores (157, 242, 515). It is possible selected
�-MSH peptides could still modulate pigmentation indi-
rectly, by modifying the cellular response to other mela-
notropins. For example, �2-MSH potentiates the melano-
genic activity of �- or �-MSH, while �3-MSH (acting as a
partial agonist on MSH receptors) largely inhibited the
melanogenic activity of �- or �-MSH (723). �-MSH also
stimulates the attachment of human melanocytes to lami-
nin and fibronectin and inhibits TNF-�-stimulated inter-
cellular adhesion molecule-1 (ICAM-1) expression in nor-
mal and malignant human melanocytes (reviewed in Ref.
756).
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B) MOLECULAR CHARACTERIZATION OF MELANOCORTIN RECEP-
TORS. Cross-linking experiments identified a membrane-
bound MSH receptor of �45 kDa in a number of melano-
cytic lines (774), and subsequently, a family of melano-
crotin (MC) receptors (MC1 to MC5) was cloned (119,
120, 200, 201, 391, 497, 498, 634). They belong to the
superfamily of seven transmembrane G protein-coupled
receptors, share amino acid sequence homology of 40–
60%, and have short intracellular carboxy-terminal and
short extracellular amino-terminal domains. MC recep-
tors are coupled to adenylyl cyclase, with possible addi-
tional coupling to phospholipase C in the case of MC3
(200, 634). MC receptors have different pharmacological
profiles of activation by MSH and ACTH peptides; MC1R
is the most important in the regulation of melanogenic
activity (498, 624; for review, see Ref. 660).

I) MC1 receptor or MSH receptor. Human and mouse
MC1R consist of 317 and 315 amino acids, respectively,
and share 76% homology in amino acid sequence (120,
498). MC1R has the highest affinity for �-MSH and ACTH,
as judged by intracellular cAMP accumulation (200, 201,
498) and in vitro binding assay (120). MC1R mRNA is
expressed in melanocytes and melanoma cells and in
other human skin cells (762).

The mouse extension (E) locus encodes the MSH
receptor (MC1R) (624) that determines the relative
amount and distribution of brown/black pigment (eumela-
nin) and yellow pigment (pheomelanin) through its ac-
tions on hair follicle melanocytes (708). The dominant
allele increases eumelanin synthesis while the recessive
yellow allele (e) inhibits eumelanin synthesis by coding
for a nonfunctioning MC1 receptor. This results from a
frameshift that generates a termination codon immedi-
ately after the fourth transmembrane domain, thereby
deleting the third intracellular loop essential for the re-
ceptor-G protein coupling (624). In contrast, three domi-
nant alleles, the sombre (Eso and Eso-3J) and tobacco
(Etob), result from missense mutations clustered around
the second transmembrane region, which produce hyper-
active MC1 receptors (624). The sombre alleles produce a
fairly uniform black coat, whereas the tobacco allele pro-
duces dorsal darkening. Functional analysis reveals that
the Eso-3J receptor is constitutively activated, while the
Etob receptor remains hormone responsive and produces
greater activation of adenylyl cyclase (624). Importantly,
agouti protein cannot inhibit eumelanin formation in-
duced by the constitutively active sombre receptor (897,
898).

MC1R gene sequence variants were found in over
80% of individuals with red hair and/or fair skin that tans
poorly, but in fewer than 20% of individuals with brown or
black hair and, in �4% of those who show a good tanning
response (851). Human MC1R variants are present in
�50% of white populations (660). The loss-of-function
MC1R mutations largely account for the red hair pheno-

type in humans and are associated with fair skin and
decreased ability to tan, with a significant heterozygote
effect in individuals without red hair. The Asp84Glu vari-
ant of MC1R is associated with melanoma (852), and the
loss-of-function MC1R variants may increase the risk for
developing melanoma and nonmelanoma skin cancer.

II) MC2 receptor or ACTH receptor. Human MC2R
consists of 297 amino acids and is 39% identical to human
MC1R (498). MC2R has specific affinity for ACTH, and its
mRNA is predominantely expressed in the cortex of ad-
renal gland, especially the zona fasciculata, since MC2R is
primarily responsible for glucocorticoid production.
MC2R mRNA has nevertheless been detected by RT-PCR
in human skin biopsy specimens of compound melano-
cytic nevus, and in cultured normal and malignant mela-
nocytes (725). MC2R was also detected in skin of the
C57BL/6 mouse by Northern blotting, being present at
concentrations significantly lower (severalfold) than MC1
and in a pattern independent of hair cycle (169). Because
some authors found ACTH more potent than �-MSH in
stimulation of melanogenesis in human melanocytes (303,
304, 307), a potential role for MC2R in the regulation of
melanocytic activity needs clarification.

III) MC3–5 receptors. MC3R responds to �-, �-,
�-MSH, and ACTH with equal potency and efficacy, unlike
the MSH and ACTH receptors (201). MC3R is unique
because of its potent activation by �-MSH peptide (634).
Mouse MC3R is expressed in brain, placental, and gut
tissues but not in melanocytes or melanoma cells nor in
the adrenal gland (201); MC3R is involved in the regula-
tion of energy homeostasis (95, 113), but not pigmenta-
tion.

MC4R responds equally to both �-MSH and ACTH.
MC4R is expressed primarily in the brain and is undetect-
able in the adrenal cortex, melanocytes, and placenta.
Null mutations of the MC4R are associated with hy-
perphagia, obesity, and accelerated longitudinal growth in
mice (308). This obesity syndrome could explain the char-
acteristic features of the agouti obesity syndrome in lethal
yellow mice, which results from ectopic expression of
agouti protein, namely, the overexpressed agouti protein
induces obesity by antagonizing at the MC4R. In contrast
to MC3R(�/�) mice, MC4R knockout mice exhibit in-
creased food intake and obesity (354). Mice lacking both
MC3R and MC4R become significantly heavier than
MC4R(�/�) (113). These results suggest that MC3R and
MC4R are involved in the regulation of energy homeosta-
sis through separate mechanisms and do not participate
in mammalian pigmentation.

MC5R is preferentially bound by �-MSH and is widely
expressed in peripheral tissues. These include skin, adre-
nal gland, skeletal muscle, bone marrow, spleen, thymus,
gonads, uterus, and brain (391), with high expression
levels in exocrine tissues such as Harderian, preputial,
lacrimal, and sebaceous glands (116). MC5R-deficient
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mice exhibit exocrine gland dysfunction, such as severely
defective water repulsion and thermoregulation due to
decreased production of sebaceous lipids, indicating that
the MC5R is required for the correct function of the
exocrine glands. MC5R has no effect on melanin pigmen-
tation (116).

C) CELL BIOLOGY AND BIOCHEMISTRY OF MELANOCORTIN RECEP-
TORS. The phenotypic effects of MSH and ACTH peptides
in melanocytes are mediated via interactions with cell
surface receptors containing seven transmembrane do-
mains linked to the Gs protein and cAMP-dependent path-
ways (reviewed in Refs. 128, 157, 515). In addition, acti-
vation of PKC by �-MSH may also be involved in stimu-
lation of melanogenesis (85, 554). MSH receptor signal
transduction may probably be also coupled to phospho-
lipase C-activated production of inositol trisphosphate
(IP3) and diacylglycerol (DG) with subsequent mobiliza-
tion of intracellular calcium (85). Studies in different
melanoma models have generated conflicting results, e.g.,
in human melanomas �-MSH stimulates IP3 production
(796), while in hamster melanoma the MSH signal trans-
duction and subsequent phenotypic effect are linked to
cAMP without any evidence of IP3 production (733). Phar-
macological studies with cloned MC receptors have
shown that signal transduction (including MC1) is cou-
pled exclusively to activation of adenylyl cyclase (127,
515). In one case, modest activation of IP3 production was
noted, and related to stimulation of MC3 type receptor
only. There is no evidence that MC1 and MC2 receptors
are coupled to pathways other than cAMP second mes-
senger generating systems (127, 515).

That phenotypic effect of MSH is mediated through
interaction with a specific cell surface receptor was first
established in frog melanophores, when �-MSH was
found to induce cAMP production and darkening of the
frog skin (412). Studies in the mammalian system murine
S91 melanoma cells were the first to show that MSH
interacts with specific cell surface receptors that activate
adenylyl cyclase activity that increases intracellular
cAMP (569). This resulted in increases in tyrosinase ac-
tivity and melanin production, stimulation of dendrite
formation, and inhibition or stimulation of cell prolifera-
tion (415, 559, 563, 570–572, 571). These findings estab-
lished that in mammalian melanocytes the phenotypic
effects of ligand activation of MSH receptors are mediated
by cAMP through activation of PKA and phosphorylation/
dephosphorylation reactions (373, 551, 559, 562).

After binding the ligand, the MSH receptor is inter-
nalized and targeted to either endosomal compartments,
the Golgi region, or melanosomes (107, 415, 487, 559, 561,
563, 856). Binding of MSH to the MSH receptor and the
subsequent activation of adenylyl cyclase were found to
be dependent on the presence of Ca2� in the receptor
milieu; calcium binding protein (CBP) may partially acti-
vate the receptor even in the absence of the ligand (170).

Intracellular MSH binding sites with different subcellular
localization have also been detected; it has been proposed
that these internal MSH receptors would participate in the
regulation of cellular phenotype without circulating
through the plasma membrane (107, 561). In fact, in the
intramelanosomal environment MSH receptor activated
signaling cascade may stimulate tyrosinase activity
through mechanisms involving phosphorylation/dephos-
phorylation cascades (373, 551, 553, 559). Delivery of
�-MSH to melanosomes could also change the physico-
chemical interaction of tyrosinase with 6-BH4 to stimulate
tyrosinase activity (490, 579, 666). Thus delivery of MSH-
MSH receptor complex to the melanosome may be an
integral regulatory step of melanogenesis (415, 487, 561),
whereas its delivery into the endosomal/Golgi region may
affect the posttranslational regulation of the melanogenic
apparatus. It must be noted that MSH stimulates the
processing of tyrosinase and tyrosinase-related proteins
and the formation of melanosomes (262, 263, 515). Regu-
lation by MSH of transcription and translation of tyrosi-
nase and MRPs could be mediated indirectly through
MITF or directly through activation of PKA- or PKC-
dependent pathways. Nevertheless, there is a consensus
that MSH stimulates production and activity of MRP at the
transcriptional, translational, and posttranslational levels.
Furthermore, MSH stimulates delivery of tyrosine to
melanosomes (592). Other functions of MSH receptors
including immunoregulation and its coupling to different
signal transduction system in nonmelanocytic cells such
as stimulation of the Janus kinase 2 (JAK2) and signal
transducers and activators of transcription (STAT1) path-
ways, suppression of nuclear transcription factor NF�B,
inhibition of NO, and neopterin production and prosta-
glandin synthesis (442, 762) are outside the scope of this
review.

D) REGULATION OF MSH RECEPTORS EXPRESSION. Expression
and activity of MSH receptors in mammalian pigment
cells are also regulated by intrinsic and extrinsic factors
of which the most important is UV radiation (UVR) (63,
103, 105, 561, 747, 762). Thus Pawelek et al. (561) have
proposed that UV-induced melanogenesis was mediated
via upregulation of the MSH receptor system. Indeed,
UVR does upregulate expression of MSH receptors, am-
plifying the melanogenic effect of exogenous MSH in a
dose-dependent manner in vivo and in cell culture sys-
tems (63, 104, 561). In murine melanoma, UVR action
appeared to involve arrest of the cell cycle at the G2

phase, when cultured melanocytes express maximal MSH
receptor activity and responsiveness to MSH (476, 561).
The G2 phase coupling of increased MSH receptor expres-
sion was associated with increased cellular responsive-
ness to the ligand (149, 476, 855, 901). Nevertheless, G2-
restricted expression and activity of MSH receptors ap-
pears to be specific for rodent melanocytes, since it has
not been observed in a human model. In both mouse and
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human melanocytes, UVR similarly stimulates expression
of MSH receptors (103).

Factors known to raise intracellular cAMP levels
such as MSH itself, ACTH, dibutyryl cAMP, cholera toxin,
and phosphodiesterase inhibitors also stimulate MSH re-
ceptor expression and activity (105, 149, 559, 561, 762). In
addition, positive cooperativity of MSH receptors has
been documented in mouse and hamster melanoma cells
(475, 476, 732). In normal and malignant melanocytes,
interleukin (IL)-1�, IL-1�, endothelin-1, adult T-cell leuke-
mia-derived factor/thioredoxin (ADF/TRX), interferon
(IFN)-�, IFN-�, IFN-�, dibutyryl cAMP, and the hormones
�-MSH, �-MSH, and ACTH can stimulate expression of the
MC-1 gene and of functional cell surface MSH receptors
(reviewed in Refs. 442, 762). IL-1 can also stimulate MC-1
receptor expression in normal and malignant human ker-
atinocytes (59). The melanin precursors L-tyrosine and
phosphorylated isomers of L-DOPA also stimulate expres-
sion of MSH receptors and melanogenic responsiveness
to MSH peptides (475, 560, 732, 748). A similar effect was
described for thymidine dimers and small single-stranded
DNA fragments (ssDNA) that are produced intracellulary
after UV-induced damage (165, 166, 212). Retinoic acid,
while stimulating MSH receptor expression, inhibits MSH-
induced melanogenesis (108, 540, 541). In addition, reti-
noic acid and vitamin E inhibit MSH-sensitive adenylate
cyclase activity in mouse melanoma cells (644). Tumor
necrosis factor (TNF)-� inhibits MC1 expression in mela-
nocytes (192). Thus, while MSH receptors are important
regulators of melanocyte activity, they are also subject to
positive and negative regulation by multiple factors.

The function of the MC1 receptor, being the subject
of multiple regulatory inputs while also controlling mela-
nogenesis at different levels, suggests that it represents a
molecular switchboard (“molecular chip”) for the various
melanogenic signals. An example of such integration
would be the melanogenic response to UVB, which is not
a collection of random events but, instead, a highly coor-
dinated sequence involving MSH receptors expression
and activity, and local production of its ligands (MSH and
ACTH peptides) that act as cofactors in the stimulation of
cutaneous melanogenesis (103, 561, 747).

E) PARA-, AUTO-, AND INTRACRINE MODES OF REGULATION OF

MELANOCYTIC ACTIVITY. Since the first demonstrations of
POMC gene and protein expression in skin of both ro-
dents (742) and humans (678), several laboratories have
documented that skin cells can produce different POMC
peptides (reviewed in Ref. 762). The relative skin concen-
tration of POMC mRNA is, however, severalfold lower
than that detected at the central level (724). The size of
POMC message detected in the skin was, depending on
the source, similar, larger, or shorter than the 1.1–1.2 kb
usually detected in pituitary or hypothalamus (762). A
short POMC mRNA of �0.9 kb contained the coding exon
3 but lacked the sequence encoding the signal peptide

(762). Nevertheless, this cutaneous POMC mRNA was
translated into the 30- to 33-kDa POMC precursor protein.
Depending on tissue or cell source, the precursor is fur-
ther processed to final products that included �-lipotropin
(LPH), �-endorphin, �-MSH, ACTH1–39, ACTH1–17, ACTH1–13,
ACTH1–10, acetyl-ACTH1–10, �-MSH, diacetyl-�-MSH, and
�-MSH peptides (714, 731, 758, 821, 866, 896). Because
skin cells also express the convertases PC1 and PC2 and
7B2 protein (necessary to generate enzymatically active
form of PC2), POMC processing may be similar to that
described at the central level, including compartmental-
ized processing, e.g., specific for corticotrophs and mela-
notrophs as in the pituitary (762). In fact, we have already
detected differential, cell type-associated and hair cycle
phase restricted expression of PC1 and PC2 convertases
in the skin of C57BL/6 mouse (470). The final POMC
peptides can potentially be produced in all cutaneous
compartments (epidermis, dermis, and adnexa) by epithe-
lial and melanocytic cells and cells of mesenchymal origin
such as immune cells, fibroblasts, and endothelial cells
and also by release from sensory nerve endings (reviewed
in Ref. 762). Local POMC gene expression and production
of POMC peptides can be modulated with UVR, cytokines,
growth factors, and cAMP and varies according to phase
of the hair cycle (762).

Thus locally produced melanocortins and adrenocor-
ticotropin could regulate melanogenesis though para-,
auto-, or intracrine mechanisms (762). Specifically affected
cutaneous histocompartment, and prevalent signal (UV
radiation, cytokines, or phase of hair cycle) would define
the cell populations releasing POMC-derived peptides to
change the activity of neighboring melanocytes (para-
crine mechanism). The same signals (UV, IL-1, or cAMP)
could even directly upregulate both POMC and MC1 re-
ceptor expression (reviewed in Refs. 442, 759, 762), im-
plicating concerted action (“fine-tuning”) of POMC ex-
pression and MC1 receptor activity. Such interactions
should ensure specificity and selectivity in the final result.
For example, bidirectional communication through MSH
or ACTH signals between melanocytes and keratinocytes
within the epidermis or anagen hair follicle would regu-
late production and transfer of melanin pigment to kera-
tinocytes and thus skin or hair pigmentation. While auto-
crine regulation of MSH receptor activity may be opera-
tive in melanocytes in vitro, it is the intracrine mechanism
that has a predominant role in vivo. Melanocytes do pro-
duce and process POMC and express intracellular MSH
receptors (reviewed in Ref. 762), and a POMC processing
system has been identified in human melanosomes (579).
These findings underscore the specific targeting of POMC
or intermediate products of its processing by internal
(intracellular) MSH receptors to the target organelles.
Similarly, �-endorphin and �-opiate antigens have been
colocalized in melanosomes (348). Accordingly, expres-
sion of shorter POMC transcripts encoding products lack-
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ing the signal peptide would interfere with the export of
POMC peptides from the cell to ensure restriction of its
effect to the same cell or its immediate vicinity. Thus the
cutaneous POMC system may counteract local stresses
through highly restricted regional circuits that self-regu-
late their level of expression independent of the central
nervous system (762). The system could operate at differ-
ent organizational levels (cellular, tissue, and organ) via
combinations of intra-, para-, and perhaps autocrine
mechanisms of action (reviewed in Ref. 762). Of clinical
interest, the local peculiarities of the POMC system can
also explain the increased skin pigmentation of patients
with Addison’s disease, particularly in the sun-exposed
areas. Thus the extremely high plasma ACTH levels in
conjunction to UV-induced damage would overcome the
dermal-epidermal barrier to reach melanocytes overex-
pressing MC1 receptors (758). In this context we have
proposed that ACTH after binding to the MC1R could be
internalized and further processed to �-MSH that would
stimulate on site melanogenesis (758).

2. �-Endorphin and opioid receptors

A) AN OVERVIEW. The category of opioids is divided into
those containing the message domain Try-Gly-Gly-Phe,
comprising enkephalins, endorphins, and dynorphins; and
those with the Tyr-Pro-Phe/Trp sequence, comprising the
endomorphins-1 and -2. Receptors for these ligands rep-
resent an heterogeneous set and include the mu (�), delta
(�), and kappa (�) (206, 557). �-Endorphin is produced by
a cleavage from the �-LPH fragment by prohormone con-
vertase 2 (41, 137, 691) and binds with high affinity to the
opiate receptors � and �; and with low affinity to �
receptors (214). The genes for these receptors are simi-
larly organized, with coding regions extending over three
exons to encode extracellular, transmembrane, and cyto-
plasmic domains of the G protein-coupled receptors that
belong to the same superfamily (884). �-Endorphin, like
the opioids enkephalins and dynorphins, mediates its bi-
ological actions by activation of receptors coupled with
one of multiple G proteins to regulate adenylyl cyclase, PI
3-kinase, MAP kinase pathways, and Ca2� and K� chan-
nels (129). Even in the absence of ligand, opioid receptors
can exhibit intrinsic activity that can also be reversed by
opioid antagonists.

B) ROLE OF 	-ENDORPHIN IN SKIN BIOLOGY AND PIGMENTATION.
�-Endorphin has been implicated in the pathogenesis of
several dermatoses, for example, elevated �-endorphin
plasma levels have been reported in psoriasis (215) and in
atopic dermatitis (216). These similarities have been re-
lated to �-endorphin action as a differentiation factor for
keratinocytes through upregulation of cytokeratin 16 ex-
pression (55). �-Endorphin plasma levels are also higher
in patients with the depigmentation disorder vitiligo,
whereas in the skin itself, they are higher in lesional

versus uninvolved areas (499). To date, only the �- and
	-opioid receptors have been localized to the skin where
their expression has been detected in normal epidermal
keratinocytes (53, 929), in chronic and acute wounds (54),
and in epidermal melanocytes (348).

A role for �-endorphin in pigmentation has been
suggested by the increased plasma �-endorphin and
�-LPH levels that may occur post UVA exposure (420)
with attendant skin pigmentation. �-Endorphin has been
identified in normal and malignant human melanocytes in
vitro (714) and in normal human skin (348, 763). �-LPH,
the immediate precursor of �-endorphin and �-MSH, can
stimulate melanogenesis in sheep (434), and elevated se-
rum levels of �-LPH may be associated with generalized
hyperpigmentation in humans (12). Studies performed
with rodent malignant melanocytes have nevertheless
shown a lack of melanogenic activity for �-endorphin and
its different modified forms (173, 446).

The �-endorphin/�-opiate receptor system is promi-
nently expressed in human epidermal melanocytes in situ
and in vitro, and the peptide and its receptor are closely
associated with melanin-producing melanosomes. This
suggests that the �-endorphin/�-opiate receptor system is
functionally active via its ability to upregulate melanocyte
dendricity, proliferation, and pigmentation (348). Because
both �-endorphin ligand and �-opiate receptors are de-
tected in epidermal melanocytes and keratinocytes, auto-
crine and paracrine mechanisms of action appear highly
likely in the regulation of melanocyte physiology. In fact,
the finding of a positive correlation between �-endorphin
expression and melanocyte differentiation status (i.e., pig-
mentation and dendricity) suggests that �-endorphin ex-
pressed by epidermal melanocytes may indeed be in-
volved in the modulation of melanocyte differentiation
through autocrine control. Expression of the �-opiate
receptor also correlates positively with melanocyte differ-
entiation in vitro, supporting that �-opiate receptor ex-
pression may be upregulated by its ligand �-endorphin,
similar to the binding of �-MSH to MC1R (104, 747). Both
opioid agonists and the antagonist naltrexone appear to
downregulate the same receptor in keratinocytes (53).

Cultured normal epidermal melanocytes treated with
�-endorphin show increased melanogenesis and prolifer-
ation, providing direct evidence that the �-endorphin/�-
opiate receptor system is functionally active in skin me-
lanocytes (348). Importantly, these changes were of a
similar magnitude to those reported for the known mela-
notropins �-MSH and ACTH (304, 306, 307). �-Endorphin
also exerts potent dendritogenic effects in epidermal me-
lanocytes, where it not only increases production of mel-
anized pigment granules, but also facilitates their active
transfer to recipient keratinocytes.

It is well documented that �-MSH and ACTH stimu-
late melanogenesis acting via the MC-1 R through the
adenylyl cyclase/cAMP second messenger system (92).
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Paradoxically, �-endorphin exerts similar biological ac-
tions via inhibition of the same signaling pathway. Thus
opioid peptides, unlike �-MSH and ACTH, decrease the
formation of cAMP (357). Nevertheless, other intracellu-
lar pathways, such as the PKC-�-dependent pathways, are
increasingly being implicated in the regulation of melano-
genesis (555). Experimentally, the topical application of
bisindolylmaleimide, a selective PKC inhibitor, reduces
skin pigmentation in guinea pig skin in vivo. Thus it is
likely that �-endorphin/�-opiate receptor (R) interactions
would signal via the PKC �-isoform to cause direct acti-
vation of tyrosinase with stimulation of melanogenesis.
Alternately, the �-endorphin/�-opiate R signaling system
could operate at the level of gene transcription increasing
tyrosinase expression with consequent upregulation of
melanogenesis. Of note, patients with rheumatoid arthri-
tis exhibit localized high levels of �-endorphin in synovial
fluid of affected joints (143), raising the possibility that
local increases in �-endorphin might be involved in the
highly restricted associated hyperpigmentation (207).
Thus �-endorphin can act as a regulator of human skin
pigmentation; however, its pigmentary response appears
to be mediated via an MC1R-independent mechanism.

3. Endothelins and their receptors

A) OVERVIEW. Endothelin (ET) was originally described
as an endothelium-derived peptide with potent vasocon-
strictor activity (915), although it is also detected in a
broad range of tissues (641, 710) that include skin (315).
ET comprises the isopeptides ET-1, ET-2, and ET-3, the
molecular forms emerging from the cleavage of three
large peptide-specific prohormones (preproendothelin)
by prohormone convertases, in a similar manner to that in
melanocortin production (239, 317, 404). The ET recep-
tors, ETA and ETB, are members of the heptahelical G
protein-coupled receptor family (22, 653). The genes for
the two receptors are similarly organized and have amino
acid homology of 55–64% depending on the tissue tested.
ETA has very high affinity for ET-1 and ET-2 (pM range),
but lesser affinity for ET-3 (nM range); in contrast, the
ETB receptor has similarly high affinity for all three ETs
(22, 653). There appears to be considerable tissue speci-
ficity in the expression of ET receptors; in the skin, both
ET-1 and ET-3 binding sites have been determined (cor-
responding to ETA and ETB) on micro and large blood
vessels, sweat glands, epidermis, and hair follicles (367).

Endothelins affect multiple intracellular signaling
pathways that may differ according to cell type and result
in short-term (e.g., secretion) or longer term (e.g., prolif-
eration) biological actions (711). Thus, upon binding to
the G protein-coupled ET receptor, ET activates phospho-
lipase C with production of IP3 and DG, Ca2� influx, and
activation of phospolipase C. ET also activates phosphati-
dylcholine-specific phospholipase D in a step regulated by

PKC and intracellular Ca2� concentration ([Ca2�]i) (511)
or is directly coupled to plasma membrane Ca2� chan-
nels. The mitogenic effects of ET-1 are likely the result of
its phosphorylation of tyrosine and threonine residues,
activation of MAP kinase, upregulation of platelet-derived
growth factor (PDGF) gene expression, and enhancement
of c-fos, c-jun, and c-myc gene expression (710).

B) ENDOTHELINS AND MELANOCYTE DEVELOPMENT. Mice defi-
cient in ET-1 or ETA exhibit nearly identical defects in
cephalic and cardiac neural crest cells subsets (124, 383),
while mice deficient in ET-3 (lethal spotting; point muta-
tion in the ls gene) and ETB (piebald-lethal; deletion of the
sl gene) show coat color deficits (in addition to agangli-
onic megacolon) with absence of melanocytes (34, 288).
Inactivation of the gene for endothelin converting en-
zyme-1 (needed for proteolytic activation of ET-1) also
results in lack of skin melanocyte development, despite
the presence of ET-1 in nonmelanocyte relevant sites in
the embryo. A human homolog for these gene inactivation
models is represented by patients with sporadic and fa-
milial Hirschprung disease, who often present with hy-
popigmentation of the skin and hair (600).

The involvement of the endothelin system, in the
process of melanocyte development, appears to occur at
a very early stage, with the critical time being E10.5 in
mice implying its participation in melanoblast expansion/
proliferation. Because melanocyte progenitors are also
lost at a similar stage in SL or W mutant embryos (stem
cell factor and c-kit, respectively), both systems are prob-
ably crucial for the development and survival of melano-
cyte progenitors. Pigmentation in sl/sl mice (ETB null) is
restricted to a narrow region of the craniofacial and cau-
dal skin, suggesting that melanocyte proliferation is sup-
pressed in the absence of a functional ETB receptor (922).
However, melanoblast proliferation can occur in the epi-
dermis independently of ET-3 itself, possibly related to
the binding of other endothelins to the ETB receptor. Thus
ET-3 is functionally required only for melanoblasts to
begin their dorsolateral path migration.

ET-3 stimulates the differentiation of neural crest
progenitors into fully mature pigmented melanocytes,
melanoblast proliferation, and acts synergistically with
stem cell factor (SCF; Steel factor) (612). Nevertheless,
compensatory interactions of ET-3 for SCF in the survival
and proliferation of those cells are not seen in vivo (534).
Exposure to ETs of mouse neural crest cells expressing
the early melanoblast marker dopachrome tautomerase
(Dct) result in a proliferative and pigmentary response,
with ET-1 and ET-3 being more potent proliferating agents
than ET-2, and the response is blocked by an ETB antag-
onist (536). ET receptor gene expression in tissues that
include the skin appears to increase during the later
stages of embryonic development to reach maximal ex-
pression immediately after birth (5).
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C) ENDOTHELINS AS REGULATORS OF ADULT MELANOCYTES. En-
dothelin has been identified as a potent stimulator of
proliferation and differentiation of human melanocytes
(910). ET is in fact secreted by keratinocytes and stimu-
lated by UVB radiation to evoke a melanocyte response
characterized by proliferation and melanogenesis (315,
910). Addition of ET-1 to cultured human epidermal me-
lanocytes results in increased tyrosinase activity and
TRP-1 mRNA expression, whereas expression of the same
genes in human skin is increased after UVB irradiation
(313). The effect of ETs on tyrosinase activity is probably
mediated via activation of PKC, elevation of cAMP, and
activation of PKA (313). ETs have also been implicated in
development of melanocyte dendricity (258). The ET-con-
verting enzyme-1, which is involved in the processing and
UVB-inducible secretion of ET-1 by keratinocytes, is also
expressed in melanocytes (239). ETs can also cooperate
and synergize with other growth factors to alter melano-
cyte phenotype. For example, melanocyte cultures
treated briefly with ET-1 upregulate mRNA for MC1R, and
also MC1R binding activity for �-MSH (192, 806). Con-
versely, ET-induced melanocyte differentiation may be
enhanced by �-MSH, although this finding is not universal
(279).

D) ENDOTHELINS AND PATHOLOGY OF SKIN PIGMENTATION. ET-1
protein expression is higher in lentigo senilis lesional
skin, compared with perilesional skin; moreover, lesional
skin shows increased expression of transcripts for ET-1,
ETB, and tyrosinase, as well as the ET-inducible cytokine
TNF-�. Thus this type of hyperpigmentation may be asso-
ciated with overactivity of the ET cascade. As regards
ET-1, both binding and growth response are lower in
metastatic melanoma cells than in primary melanoma
cells (158). A consistent finding has been that despite
significant ET receptor expression in melanoma cells, the
cells exhibit reduced growth response to ET-1 compared
with normal melanocytes.

4. Histamine and its receptors

A) OVERVIEW. Histamine (�-imidazolylethylamine) is
generated by enzymatic decarboxylation of histidine by
L-histidine decarboxylase and is stored within cell gran-
ules. In some systems, the decarboxylation step may be
alternatively performed by an aromatic amino acid decar-
boxylase, dopa-decarboxylase (227). Intracellular hista-
mine may participate in cellular proliferation, while his-
tamine released into the intercellular space is catabolized
to form imidazole-carboxyaldehyde, 1-methyl-histamine,
or 1-methyl-imidazole-acetic acid (227). Histamine metab-
olism proceeds very rapidly in skin (805). Following the
cloning of histamine receptors H1 and H2 (202, 914), their
pharmacological functions have been better defined (37).
The H1 receptor is �56 kDa and H2 �59 kDa (274). One
additional receptor exhibits “autoreceptor” activity

(H3A-C) of 70 kDa (118, 437), and a fourth histamine
receptor of 85 kDa, H4, closely related to H3, has recently
been identified (430, 507, 521). As H4 appears to be ex-
pressed on mast cells, it may also be present in skin (931).

All four known histamine receptors are G protein-
coupled receptors. H1 histamine receptor induces func-
tional responses by activating phospholipase C via a Gq/11

followed by an increase in inositol phosphate, mobiliza-
tion of [Ca2�]i, and activation of PKC (417). H1 can also
activate other signaling pathways such as guanylyl cy-
clase with subsequent stimulation of NO synthase activity
(927), and it can also induce the release of arachidonic
acid and its metabolites prostacyclin and thromboxane A2

(501). Histamine H2 receptors couple via Gs protein to
simulate adenylyl cyclase activity (273). There is also
evidence of H2 coupling to other pathways including
[Ca2�]i, although these effects appear to be cell type
specific. In contrast, signaling via H3 receptors is more
speculative (123). Signal transduction via the H4 receptor
appears to be similar to that of H3, i.e., coupling to a Gi�
protein to inhibit adenylyl cyclase (931) with subsequent
mobilization of Ca2�.

B) CUTANEOUS HISTAMINE FUNCTION. Histamine is found at
high levels in mast cells in skin, lung, intestinal mucosa,
basophils in the blood, the so-called histaminocytes in the
gastric mucosa, and the central nervous system. In the
skin, dermal mast cells store large amounts of histamine
within granules, and it mediates itching upon release. The
itch sensation is abolished by epidermis removal; itching
increases when integrity of the epidermis versus dermis is
compromised (640). Antihistamine agents are effective
treatment for pruritis associated with inflammation (1).
Histamine generation has also been demonstrated in hu-
man skin keratinocytes (450), which can release up to 50%
of the release from dermal mast cells (122). Histamine
roles may include regulation of cell proliferation/differen-
tiation, neurotransmission, and immunomodulation (525,
872). Histamine has been demonstrated in several skin
compartments including mast cells, blood vessels, eccrine
gland, hair follicles, and epidermis (341, 450).

Primary cultures of epidermal keratinocytes contain
and release significant amounts of histamine, and UVB
irradiation increases further its levels and also stimulates
its release (450). Epidermal keratinocytes also express H1

and H2 receptors (183, 226), and there may even be H3

receptors in skin, as suggested by flare responses to in-
tradermal injections of selective H3 agonists (349). A role
for histamine in epidermal proliferation is indicated by
the inhibition of reactional epidermal hyperplasia after
histamine receptor antagonists have been applied to bar-
rier-disrupted epidermis (27).

C) HISTAMINE ACTION ON MELANOCYTES. Mast cells release
histamine if irradiated in the presence of photolabile red/
yellow pheomelanin and pheomelanoprotein (605), but
not when irradiated alone or in the presence of the pho-
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tostable brown/black eumelanin. Antimalarials (e.g., chlo-
roquine) may also alter cutaneous pigmentation by antag-
onizing histamine responses (372). The level of constitu-
tive melanization of the skin does appear to affect
histamine action, since direct intradermal injection of
histamine phosphate induces greater wheal sizes in black
versus white skin (854).

A link between histamine biology and melanogenesis
may be represented by the inhibition of tyrosinase activity
and melanogenesis in melanoma cells exposed to hista-
mine H2 receptor agonists (473). Moreover, histamine H1

receptor antagonists (mepyramine) and H2 receptor an-
tagonists (cimetidine, ranitidine) appear to increase ty-
rosinase activity, while H2 receptor agonists stimulated
cell proliferation. H2 receptor antagonists stimulate mel-
anin accumulation in some melanoma lines, but this is
likely to be associated with inhibition of proliferation
(845).

Stimulation of the H2 receptor increases cAMP pro-
duction and tyrosinase activity in melanoma cell lines
(887), although increases in tyrosinase activity, albeit
minimally, are also seen with histamine H2 receptor an-
tagonists (e.g., cimetidine) in normal human epidermal
melanocytes (408). Histamine had no effect on white or
black foreskin melanocyte cultures in concentrations up
to 1 �M (325). The histamine H2 receptor agonist analog
S-[2-(N,N-dialkylamino)ethyl]isothiourea was able to de-
pigment melanoma cells, with or without inhibition of
tyrosinase, suggestive of downregulation of the message
from pigmentation genes (174). However, melanocytes
cultured directly with 5 �M histamine undergo pheno-
typic changes that do include increased dendricity and
tyrosinase protein expression (837), whereas histamine in
doses as low as 0.1 �M rapidly increase tyrosinase activity
and TRP-1 protein expression. These melanogenic and
morphogenic effects of histamine elicited at 0.1–10 �M in
normal human epidermal melanocytes can be inhibited by
H2 receptor antagonists (e.g., famotidine), but not by
antagonists of either H1 or H3 receptors (923). The central
involvement of signaling through the H2 receptor was
evidenced by the similar stimulation of melanocyte phe-
notype by an H2 agonist (dimaprit) and by histamine
itself. In the latter case, melanogenesis stimulation was
likely due to accumulation of cAMP and subsequent PKA
activation, as these effects could be blocked by the PKA-
specific inhibitor H-89. Some of these discrepancies may
be due to the varying doses of agonists and antagonists
used. Furthermore, melanocyte culture conditions, such
as the inclusion of growth factors (e.g., basic fibroblast
growth factor), are likely to be important given the asso-
ciated activation of PKA (923).

The duration of histamine exposure/treatment ap-
pears also to be important, since only patients with urti-
caria pigmentosa develop hyperpigmentation and not
those with recurrent episodes of urticaria itself. Indeed,

pigmentation may require cooperation between histamine
and other factors such as SCF (131). H2 receptor antago-
nists inhibit constitutive pigmentation and also facultative
pigmentation induced by UVB irradiation (923). In this
regard, it is interesting to note that UVR stimulates the
release of histamine from keratinocytes (450), although
the inhibition of UVR-induced pigmentation is incom-
plete. Recently, it has been reported that histamine can
increase the eumelanin-to-pheomelanin ratio in cultured
normal epidermal melanocytes (405). Thus histamine may
be an important mediator of UV-induced hyperpigmenta-
tion in human melanocytes.

D) HISTAMINE IN PIGMENTARY DISORDERS. The increased
skin pigmentation associated with urticaria pigmentosa
and systemic mastocytosis appears to result from in-
creased local concentrations of histamine. Melanin-con-
taining cells and mast cells may exhibit very close asso-
ciations in lesions of nodular mastocytosis (532). Indeed,
these lesions may even contain mast cells with phagocy-
tosed melanin granules.

Serum histamine levels have been associated with
melanoma development (494), but treatment with both
histamine receptor agonists/antagonists has been associ-
ated with the induction of antimelanoma responses (767).
Because mast cells often concentrate around melanoma,
this could have perhaps prognostic significance (355,
617). Histamine itself can act as a growth factor and
chemoattractant for melanoma cells via stimulation of H1

receptors followed by mobilization of Ca2� (827). Human
melanoma cells also exhibit higher histamine levels than
normal melanocytes (616) and express histidine decar-
boxylase, the enzyme that catalyzes the formation of his-
tamine from L-histidine (237). In general, histamine sig-
naling via H1 may decrease melanoma cell proliferation,
while enhancement of cell growth may result from signal-
ing via H2 (265, 616). Other data suggest that the impact of
local histamine action may depend on number, availabil-
ity, and ratio of H1 and H2 receptors (172). In vivo studies
involving the xenografting of human melanoma cells onto
SCID mice have shown that H2 receptor antagonists can
significantly improve the survival of the engrafted mice
(804). Furthermore, melanoma metastases in the liver can
be induced to regress if histamine is coadministered with
IFN-� (6).

5. Eicosanoids and their receptors

A) OVERVIEW. The arachidonic acid-derived eico-
sanoids consist of a family of lipid-derived second mes-
sengers that include the prostaglandins, leukotrienes, and
thromboxane. Prostaglandins and leukotrienes signal
through G protein-coupled seven-transmembrane recep-
tors that differ in their G protein specificity. Multiple
prostaglandin receptors have been cloned, and coexpres-
sion of prostaglandin receptors on the same cell leads to
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opposing effects (375). Prostaglandin receptors are de-
fined as DP (for PGD), EP1, EP2, EP3 (6 isoforms), and
EP4 (for PGE), FP (for PGF), and IP (for PGI) and the
thromboxane A receptor TP subtypes (26). Most of these
receptors signal via increasing cAMP, but EP3 reduces
cAMP levels. EP1 and FP signal via PLC. Thus it is not
necessary for coexpressed prostaglandin receptors to sig-
nal via the same second messenger systems. Thrombox-
ane A2 signals via TP receptors (2 isoforms) and also
increases phospholipase C concentrations. The profiles of
leukotriene LTB4 versus the sulfidopeptide or cysteinyl
leukotrienes (LTC4, LTD4 or LTE4) is mirrored by their
having different receptors whereby LTB4 binds two BLT
receptors, and the cysteinyl leukotrienes bind CysLT1

(formerly known as the LTD4 receptor) and CysLT2 re-
ceptors (136). Coupling via their G protein-coupled recep-
tors (either Gs, Gi, or Gq) dictates whether the responses
are pro- or anti-inflammatory (772).

B) EICOSANOIDS AND MELANOCYTES. It has long been clin-
ically observed that inflammatory dermatoses are associ-
ated with striking changes in melanocyte function (514).
Eicosanoids were the first mediators investigated for their
effects on melanocyte function, since their levels are
increased in skin after sunburn (60), atopic dermatitis-
associated acute inflammation (643), contact dermatitis
(636), psoriasis (864), and urticaria pigmentosa (835).

Cultured Cloudman S91 mouse melanoma cells re-
spond to PGE1 and PGE2 by increasing tyrosinase activity
and by decreasing proliferation; PGA1 and PGD2 inhibit
cellular proliferation and tyrosinase activity, while PGF2�

had no effect. PGE1, but not PGE2 or PGD2, increases
cellular cAMP levels after 30 min of treatment (4). Eico-
sanoid effects on normal melanocyte function include
increased pigmentation (LTB4, LTC4, PGD2, PGE2),
growth (LTC4), differentiation (LTC4), and motility (LTC4)
(519). LTB4 has been shown to stimulate melanogenesis
directly in human melanocyte cell culture (492), while
LTC4 induces a marked decrease in pigment production in
cultured cells (834), although both LTC4 and its metabo-
lite LTD4 stimulate melanocyte proliferation via PKA ac-
tivation (491, 492). LTC4 is also an important regulator of
melanocyte differentiation not only increasing life span of
melanocytes in culture, but also facilitating nevoid-ap-
pearing colony formation via reduction/loss of contact
inhibition (477). Normal human epidermal melanocytes
cultured for 2 days with either PGD2, LTB4, LTC4, LTD4,
LTE4, thromboxane B2, or 12-HETE become swollen and
more dendritic, with increase in the expression of tyrosi-
nase and TRP-1 protein; in contrast, PGE1, PGF2�, and
6-ketoPGF1� did not show any significant stimulatory ef-
fect. It has therefore been suggested that arachidonate-
derived chemical mediators, especially LTC4, can induce
postinflammatory hyperpigmentation of the skin (836).
Phospholipase A2, which catalyzes the release of free
fatty acids from membrane phospholipids, has also been

shown to significantly upregulate expression and activity
of tyrosinase in cultured melanocytes, suggesting that it
may act as a mediator of UV-induced or postinflammatory
pigmentation (447).

While melanocyte behavior is influenced by inflam-
matory mediators, the cells in turn contribute to the pro-
cess by producing and releasing IL-8 and monocyte che-
motactic and activating factor in response to the proin-
flammatory cytokines IL-1 and TNF-� (928). Moreover,
IL-1 together with LTD4 and 12-HETE are also secreted by
melanocytes (801), albeit at lower levels than in cultured
keratinocytes (386). Of note, LTC4 is a potent enhancer of
melanocyte chemokinesis (491), and human melanoma
cells may express LTA4 hydrolase, catalyzing the conver-
sion of LTA4 to LTB4. Similarly, considerable activity of
LTC

4
synthase, which catalyzes the conversion of LTA4 to

LTC4, may be detected in the microsomal fraction of
melanoma cells (528).

C) EICOSANOIDS AND PIGMENTARY DISORDERS. Topical treat-
ment of vitiligo lesions with PGE2 may be associated with
marginal repigmentation with hyperpigmented borders
(556). Hyperpigmentation of the eyelid and of eyelashes
may be a complication of topical ocular hypotensive ther-
apy with latanoprost, a PGF2� analog (269, 867). Pigmen-
tation returns to normal upon cessation of therapy. La-
tanoprost is also associated with increased pigmentation
of the iris in both primates and humans (599), although it
does not appear to induce proliferation of iridial melano-
cytes. Latanoprost directly affects melanogenesis itself
via activation of tyrosinase.

6. Catecholamines and their receptors

A) OVERVIEW. The catecholamines (dopamine, norepi-
nephrine, and epinephrine) are small polar biogenic
amines that are synthesized primarily by cells of neuro-
ectodermal origin from tyrosine via its conversion to
L-DOPA catalyzed by tyrosine hydroxylase (TH) with its
essential cofactor 6-tetrahydrobiopterin (BH4). L-Dopa is
converted to dopamine via the enzyme aromatic amino
acid decarboxylase (AADC) and then to norepinephrine
(via dopamine �-hydroxylase) or epinephrine (via phenyl-
ethanolamine N-methyltransferase, PNMT) in the cate-
cholamine storage vesicle. Catecholamines are also pro-
duced in multiple peripheral sites (44, 146), including the
skin (665, 677). Classically, the catecholamines act as
neurotransmitters, but they have been shown to be in-
volved in the regulation of nearly every organ system (44,
484, 784, 789, 890), including skin function (378). The
catecholamines act through G protein-coupled seven-
transmembrane receptors subclassified into several �- or
�-subtypes. Each adrenergic receptor subtype binds a
different subfamily of G� proteins, which interact in turn
with a range of effector molecules.
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B) CATECHOLAMINE ACTION ON MELANOCYTES. Cat-
echolamines were first shown to play a role in pigmenta-
tion in nonmammalian tissues, especially amphibian chro-
matophores where both �- and �-adrenergic receptors are
expressed. While norepinephrine and epinephrine lighten
the skin of Rana pipiens (906), they have the opposite
effect on Xenopus skin (91). The human epidermis has the
full capacity to synthesize catecholamines (675); biop-
terin-dependent TH and PNMT, the key enzymes for the
biosynthesis of epinephrine, have been detected in cell-
free extracts of human skin epidermis, dermis, and cul-
tured human keratinocytes. However, these enzyme ac-
tivities were not detected in cultured human melanocytes
and fibroblasts. The presence of TH, PNMT, monoamine
oxidase (MAO-A), and catechol-O-methyltransferase
(COMT) in the epidermis was confirmed immunohisto-
chemically (411). The biosynthesis of epinephrine in the
epidermis results in the expression of increased numbers
of �2-adrenoceptors in undifferentiated keratinocytes
(786), which may control keratinocyte differentiation via
increased intracellular cAMP and Ca2� (665). In contrast,
norepinephrine induces �2-adrenoceptors in melanocytes
(662). Thus keratinocytes secrete catecholamines, which
may be critically important for �1-adrenoceptor expres-
sion and signaling in melanocytes, underlining their sym-
biotic relation. Activation of �1-adrenoceptor in melano-
cytes results in the activation of various effector enzymes,
e.g., PLC, PLA2, and increases in intracellular Ca2� (219).
Specifically, activation of PLC results in the cleavage of
membrane phospholipids to yield second messengers IP3

and DG with subsequent activation of PKC. PKC can then
phosphorylate a variety of cellular substrates, not least of
all two serine residues on tyrosinase (552), with moderate
increases in its activity. Studies performed on cultured
melanoma cells have indeed shown that epinephrine or
norepinephrine as well as other adrenergic agonists can
stimulate moderately tyrosinase activity and melanin pro-
duction (293).

C) CATECHOLAMINE IN PIGMENTARY DISORDERS. Production
of the essential cofactor for catecholamines, 6-BH4, is
enhanced in lesional and nonlesional skin of vitiligo,
leading to the accumulation of the oxidized 6-BH4. This
metabolite is toxic to melanocytes in culture (665).
High levels of 6-BH4 also lead to upregulation of TH
levels (505), perhaps explaining the higher levels of
catecholamines in patients with vitiligo in both their
skin and plasma (665). Expression of �2-adrenorecep-
tors in epidermal melanocytes obtained from vitiligo
skin may be higher than in healthy controls. Epidermal
cells from vitiligo patients also express higher levels of
COMT activity (411). COMT is involved in the metabo-
lism of epinephrine, norepinephrine, and dopamine and
also prevents the formation of toxic o-quinones during
melanin synthesis in melanocytes (765). Indeed, meth-
ylation of the melanin precursor molecule DHI by

COMT prevents its further incorporation into melanin.
Melanocyte “autodestruction” by intermediates of mel-
anin metabolism has been implicated in the etiology of
vitiligo (411, 740).

B. SCF and Its Receptor

1. Overview

SCF, also known as mast cell growth factor (MGCF),
c-kit ligand (KL), or Steel Factor (SL), is a peptide growth
factor/cytokine encoded by a gene with a multi-exon
structure (208). Differential splicing produces mRNAs
that either include or lack exon 6, resulting in the produc-
tion of two transmembrane forms of SCF; one 248 amino
acids long (SCF248), the other 220 (SCF220). Rapid proteo-
lytic cleavage (by increased [Ca2�]i, activation of PKC,
and some metalloproteases) of SCF248 produces a soluble
SCF form that dimerizes in solution. Importantly, differ-
ential effects of soluble and transmembrane forms of SCF
are also seen in the dispersal and survival of melanocyte
precursors (see below) (879). Normal skin keratinocytes
constitutively produce SCF (435). SCF synergizes with
myriad growth factors such as IL-3, IL-6, IL-7, IL-9, Epo,
granulocyte-macrophage (GM)-colony stimulating factor
(CSF), and G-CSF (429). Steel mice, with deletions in the
SCF gene, also exhibit defective formation of germ cells
leading to sterility (233), and defective microenvironment
for the development of melanocytes, hence their steel-
colored coat (see below) (611).

SCF signals via the c-kit receptor (51, 195, 917) were
expressed on various cell types including melanocytes
(80). The c-kit receptor consists of five extracellular Ig
domains, one transmembrane domain, one inhibitory do-
main at the cytoplasm/membrane junction, and one cyto-
plasmic kinase domain (848). c-kit signaling is initiated
when SCF binds to its extracellular Ig domains thereby
inducing multiple interconnected signaling pathways that
follow the rapid formation of c-kit dimmers and internal-
ization of the SCF-c-kit receptor complex. SCF binding
not only activates receptor kinase activity, but also turns
c-kit into a phosphorylation substrate via creation of ty-
rosine phosphorylated receptor docking sites on c-kit.
Subsequent binding of multiple intracellular signaling pro-
teins, mediating protein tyrosine phosphatases SHP-1 and
SHP-2, and SH2- and PTB-containing molecules (377), as
well as the phophoinositide 3-kinase (PI3K) and phospho-
lipase C-� can regulate c-kit activity. Initial expansion of
the melanoblast pool requires signaling from c-kit, MITF,
and the ETB receptor (EDNRB) (291). Signaling by c-kit

also favors melanocyte proliferation (697). Thus c-kit can
influence gene expression during the development of me-
lanocytes in a gene-selective way.
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2. SCF/c-kit in melanocytes

Mutations in the receptor tyrosine kinase c-kit

[mapped to the white spotting (W) locus in mice] or its
cognate ligand SCF [mapped to the steel (sl) locus in
mice] (380, 496, 510) exert deleterious effects on three
migratory cell lineages: primordial germs cells, hemato-
poietic stem cells, and melanocytes, resulting in reduced
fertility, anemia, and loss of pigmentation, respectively.
Mice with homozygous c-kit mutations have an almost
white coat, while c-kit mutations in humans are associ-
ated with piebaldism (778, 802). Melanoblasts express
c-kit from the time they leave the neural crest; it contin-
ues to be expressed on some, but not all, melanocytes in
postnatal animals, while expression of its ligand SCF is
more selective (380, 496, 510).

Studies on the role of c-kit/SCF signaling on mel-
anoblast/melanocyte regulation have been based on
phenotypic finding after c-kit/SCF signal disruption (by
mutations or antibody treatment) (76, 879, 880, 922);
and on the effects of SCF treatment on c-kit expression,
melanoblast proliferation, differentiation, and apopto-
sis (322, 340). The c-kit/SCF interaction is critical for
melanocyte survival (785) as shown by the induction of
apoptosis in murine melanocytes after injection of a
c-kit-blocking antibody (ACK2) (322). When ACK2 is
injected just before migration of melanoblasts from the
epidermis into developing hair follicles, the entire coat
remains white (510, 922); with later injections patches
of white hair develop and melanocytes are detected
only in those hair follicles that were developed to at
least stage 4 of morphogenesis at the time of ACK2
treatment (922). In adult mice hair follicle cycling,
administration of c-kit neutralizing antibodies to depi-
lated mice disrupts melanocyte activation during ana-
gen (71, 510). Thus c-kit is also required for melanocyte
activation during the murine hair cycle (71, 578). Nota-
bly, melanoblasts/cytes that enter the follicular pigmen-
tary unit retain c-kit expression while differentiating
into melanin-producing melanocytes, whereas melano-
cytes that remain in the outer root sheath lose c-kit

expression at the end of hair follicle development
(578).

Epithelial-derived SCF may be the physiological reg-
ulator in the c-kit-expressing melanoblasts and melano-
cyte of mammalian skin by modulating migration and
melanocyte cytoskeleton (71, 218, 685, 687, 880), differ-
entiation (395, 444), melanogenesis (131, 444), and cell
survival/apoptosis (322). At least two isoforms of SCF are
present in skin (membrane-bound and soluble) (380);
melanoblasts are detectable in mice deficient in mem-
brane-bound SCF, but the cells do not disperse into the
developing skin resulting in only white coat (76, 879).
Correct migration and differentiation of melanoblasts ap-
pears to require the localization of membrane-bound SCF

to the basolateral cell compartment within the hair follicle
epithelium (880). Moreover, hair shafts fail to pigment if
SCF levels are reduced in the epidermis (50), or if there is
increased competition for SCF from ectopic c-kit expres-
sion in the somites (156), even if the development and
distribution of melanoblasts was normal before hair fol-
licle morphogenesis. In contrast, overexpression of the
membrane-bound SCF isoform, under the K14-promotar
(380), and SCF release from beads implanted into organ-
cultured skin results in follicular and epidermal hyper-
melanosis (340). Overexpression of both the soluble and
membrane-bound isoforms, under the K14-promotor, pro-
duces mastocytosis (380).

The targeting of c-kit-positive melanoblasts to the
epidermis and hair follicle appears to require chemoat-
tractant stimuli that cosignal with c-kit/SCF. These stim-
uli include growth factors such as endothelin (314, 534) or
specific adhesion molecules such as �1-integrin (36, 685).
Further chemoattractant signals may be expressed by the
hair follicle papilla, which may be an important local
source of SCF production.

3. SCF/c-kit in pigmentary disorders

Mutations in the c-kit receptor have been identified
within a continuous range of human piebaldism pheno-
types (184, 211, 781). Interestingly, a common side effect
of recombinant SCF therapy has been focal hyperpigmen-
tation at the site of subcutaneous injection (131, 231).
There is evidence that melanocytes in the perilesional
skin of vitiligo patients may exhibit reduced c-kit expres-
sion (518). It must also be noted that both alopecia areata
and vitiligo contain a pool of functional melanocytes in
local hair follicles that is responsive to SCF stimulation
(832).

The expression of c-kit in melanoma decreases pro-
gressively during the local growth and invasion phases
(300, 406). Moreover, tumor growth and metastasis are
inhibited in nude mice after forced c-kit expression; SCF
induces apoptosis of c-kit-positive human melanoma cells
both in vitro and in vivo (301). Nevertheless, the loss of
c-kit expression in melanoma cells is more consistent and
appears to correlate with the loss expression of the tran-
scription factor AP-2. AP-2 is involved in gene expression
in neural crest and epidermal cell lineages throughout
development and adult cell differentiation (312). The c-kit

promoter contains three binding sites for AP-2 (913).
Interestingly, induction of AP-2 expression in human mel-
anoma cells led to c-kit expression and inhibition of tu-
mor growth and metastasis (300). Furthermore, c-kit is an
imatinib mesylate-sensitive tyrosine kinase, and thus a
potential candidate for the use of this drug in c-kit-posi-
tive melanomas (177).
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C. Nuclear Receptors and Their Ligands

1. Estrogens and their receptors

A) OVERVIEW. Estrogens, C18 steroids, are produced
from C19 androgens by the microsomal enzyme P-450
aromatase (P450arom). Estrogens are produced from tes-
tosterone or androstenedione in the ovary, testis, and
adrenal gland as well as in peripheral tissues such as
adipose tissue. Estrogens are essential components of
female and male reproduction, with well-characterized
functions in the uterus, ovaries, mammary gland, and
hypothalamic-pituitary axis. The multiple estrogen ac-
tions are mediated mainly by two estrogen receptors: ER�
and ER� (228, 229). ER� consists of 595 amino acids with
a molecular mass of 66.2 kDa, and ER� consists of 485
amino acid residues with a molecular mass of 54.2 kDa.
ER� shares 97 and 60% identity with the DNA- and ligand-
binding domains of ER�, respectively. Both receptors
have high binding affinity for 17�-estradiol (E2), followed
by estriol and estrone.

ER� and ER� belong to a superfamily of ligand-
activated transcription factors. In the absence of ligand
(hormone), the receptor is sequestered in a multiprotein
inhibitory complex within the nuclei of target cells. The
binding of hormone induces conformational changes and
promotes homodimerization of ER, which is able to bind
to specific DNA response elements (estrogen-response
elements). Each receptor exhibits differential tissue ex-
pression patterns during human fetal development (75).
ER� and ER� mRNAs are expressed at low levels in the
skin. Loss of both receptors leads to a unique ovarian
phenotype, indicating that both receptors are required for
the maintenance of germ and somatic cells in the postna-
tal ovary.

Some effects of estrogens are mediated through a
mechanism independent of ER transcriptional activity
(252, 282, 376). Notably, ER� binds in a ligand-dependent
manner to the p85� regulatory subunit of phosphatidyl-
inositol-3-OH kinase [PI(3)K] (709). Thus this nonnuclear
estrogen-signaling pathway requires the direct interaction
of ER� with PI(3)K.

B) ESTROGENS AND MELANOCYTES. Estrogens have signifi-
cant effects on many aspects of skin physiology and
pathophysiology (695, 824), including skin aging, pigmen-
tation, hair growth, sebum production, and skin cancer.
The ER� and ER� are expressed in male and female
nonbalding scalp skin, and their expression profiles show
lack of any obvious differences in the skin between both
sexes but, distinct regional localization (825). ER� is pref-
erentially expressed in human epidermis, blood vessels,
and dermal fibroblasts. In the hair follicle, ER� expres-
sion is localized to nuclei of outer root sheath, epithelial
matrix, and dermal papilla cells. ER� is not clearly de-

tected in the epidermis or hair follicles. Both ER� and
ER� are expressed in the sebaceous gland.

Subjects with elevated serum estrogen concentra-
tions tend to develop increased skin pigmentation, sug-
gesting that estradiol may be involved in the pathogenesis
of melasma (chloasma). The effects of estrogens on mel-
anogenesis are uncertain (824). The incidence rates of
melanoma rise steeply in women until about age 50, but
there is no confirmatory evidence of linkage to estrogens
(175).

Human melanocytes derived from normal foreskin
express the functional estrogen receptor (331). Estradiol
treatment of those melanocytes stimulated proliferation
and reduced the melanin content by day 10, and reduced
the tyrosinase activity by day 4 (331). In contrast, incu-
bation of similar melanocytes with estradiol for only 24 h
causes dose-dependent increase in tyrosinase activity
(606), and treatment with estradiol for 2 days increases
immunoreactive TRP-1 but not tyrosinase activity in cul-
tured normal human melanocytes derived from adult fore-
arm skin. Pituitary hormones, such as ACTH, follicle-
stimulating hormone, and luteinizing hormone, increased
both tyrosinase activity and immunoreactive TRP-1 (448).
An estradiol-mediated increase in melanogenesis gene
transcripts has been reported (361); namely, treatment of
cultured melanocytes with estradiol increased the levels
of tyrosinase transcripts by 1.5- to 2.5-fold, TRP-1 tran-
scripts by 1.5-fold, and TRP-2 transcripts by 20-fold. These
results suggest that the effect of estradiol on the tyrosi-
nase activity may be influenced by multiple factors, such
as culture conditions, sex, and age. In fact, estrogen has
shown inconsistent effects on proliferation and tyrosi-
nase activity of cultured human foreskin melanocytes
(311).

2. Androgens and their receptors

A) ANDROGEN FUNCTION AND SIGNALING. Androgens are a
group of C19 steroids secreted by the adrenal glands and
also the gonads. Androgens signal via the androgen re-
ceptor (AR), a member of the nuclear receptor superfam-
ily of transcription factors that maps to band q11–12 on
the X chromosome and encodes a 110-kDa phospoprotein
of 919 amino acids (111). Testosterone and 5�-dihydrotes-
tosterone (DHT) are ligands for the AR, and in the skin
testosterone is converted to DHT by types I and II 5�-
reductases. The AR bound to either ligand is translocated
from the cytosol to the nucleus where it initiates gene
transcription events by binding androgen response ele-
ments (ARE) on multiple genes (79). At least two regions
of the AR are involved in transcriptional activity, i.e., AF-1
and AF-2 (332).

AR activity is regulated via recruiting of activator and
repressor proteins [e.g., steroid receptor coactivator-1
(SRC-1)]; although AR binding alone may directly activate
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the MAPK signaling pathway (580), MAPK appears to be
required for both ligand-dependent and ligand-indepen-
dent activation of the AR (847). An alternative signaling
pathway may involve reactive oxygen species and action
on AP-1 and NF-�B DNA binding (622).

B) ANDROGENS AND MELANOCYTE BIOLOGY. The skin is a
major target of androgens and expresses androgen recep-
tors in cells of the epidermis, dermis, sebaceous glands,
and hair follicle (11). Moreover, skin has the capacity to
metabolize androgens into DHT (861). Early work by
Hamilton (253) uncovered a poor tanning response to
UVR in white eunuchs, whereas treatment with testoster-
one increased melanization. Melanogenesis in localized
areas of the skin can be stimulated by androgens in males
(883) and in similar sites in females during their breeding
season (382). In the black-pelted rat, castration decreased
in vitro incorporation of [14C]tyrosine into melanin, while
testosterone pretreatment for 4 days reversed the effect
(893). Testosterone also blocks imidazole induction of
tyrosinase activity, most likely at a pretranslational level
(366).

Prepubertal Syrian hamsters chronically treated with
DHT exhibit increased pigmentation on dorsal costover-
tebral spots and scrotal skin, but not elsewhere on the
skin, and estradiol had the opposite effect (147). There is
regional specialization in the responsitivity of melano-
cytes to sex steroids, as seen in follicular and periseba-
ceous gland, human genital, and areolar skin (771). This
skin becomes particularly pigmented after puberty and
during pregnancy. Melanocytes cultured from genital skin
express the AR protein in a nuclear distribution (807).
Melanocytes may also metabolize testosterone to produce
DHT and express type I 5�-reductase mRNA (117, 807). A
synthetic androgen (methyltrienolone) stimulates tyrosi-
nase activity, and cAMP levels in cultured melanocytes
are reduced by testosterone, DHT, and methyltrienolone.

C) ANDROGENS AND PIGMENTATION DISORDERS. Women with
melanoma are reported to have a better prognosis com-
pared with men (604, 699). In mice, blocking of androgen
signaling enhanced immune responses to melanoma vac-
cine, and improved by 10% the rate of survival (296). Oral
contraceptives (containing progestins or estrogens) (822)
are contraindicated if there is a personal or family history
of malignant melanoma. Chloasma/melasma is one of the
most commonly reported OC-related dermatoses, and this
is exacerbated by sun exposure. Androgen treatment in
women may also accompany a decrease in age-related
skin hyperpigmentation (777). In male hypogonadism,
genital skin fails to exhibit the normal puberty-associated
increase in pigmentation (369), whereas male pseudo-
hermaphroditism with complete feminization is associ-
ated with intense cutaneous pigmentation (270). Cas-
trated mallards injected with testosterone show lower
eumelanin-to-pheomelanin ratio in the flank feathers,
compared with noninjected castrates. The high pheomela-

nin levels in the breast feathers of castrated birds were
significantly reduced after testosterone administration,
while eumelanin content increased (238). There is some
evidence that generalized vitiligo may be improved by
oral administration of a preparation containing testoster-
one and estrogen (502).

3. Vitamin D and its receptors

A) OVERVIEW. Vitamin D3 is formed in the skin by UVB
light (wavelengths 290–315 nm) (877). Rapid photolysis
(i.e., bond cleavage) converts 7-dehydrocholesterol to
previtamin D3, a thermodynamically unstable sterol that
subsequently isomerizes, via double bond rearrange-
ments, to vitamin D3. Circulating vitamin D3 must be
converted to its active form 1,25-dihydoxycholecalciferol.
Thus 25-OHase in the liver converts vitamin D3 into 25-
hydroxycholecalciferol, and in the kidneys it undergoes
further hydroxylation to either 1,25-dihydroxycholecalcif-
erol (via 1-OHase) or 24,25-dihydroxycholecalciferol D
(via 24-OHase). Both 1-OHase and 24-OHase are ex-
pressed in cultured keratinocytes (409) and in skin (680).

The nuclear receptor for vitamin D (VDR) is ex-
pressed on several target tissues that include the skin
(284). VDR is a transcription factor and member of the
steroid nuclear receptor superfamily, and in human epi-
dermis binds its enhancer element as heterodimers with
retinoid X receptor. Vitamin D is also involved in cyto-
plasmic signaling events, i.e., nongenomic signaling path-
ways, stimulating Ca2� transfer across the intestine
within 1–2 min (833). Interactions between nongenomic
and genomic routes occur via either direct phosphoryla-
tion of the nuclear VDR or via the upregulation of genes
with VDREs, which themselves encode signaling mole-
cules, e.g., phospholipase C-�. Vitamin D signaling has
important implications for cell growth, differentiation,
and apoptosis of skin cells, particularly keratinocytes,
which may indirectly regulate melanocyte behavior in
skin. Vitamin D-associated antiproliferative effects are
centered on the G1/S checkpoint of the cell cycle, where
at pharmacological levels it inhibits/arrests the cell cycle.
Control of human keratinocyte growth by vitamin D may
also involve transforming growth factor (TGF)-�2. Also,
calcipotriol, a 1–25-dihydroxyvitamin D3 [1,25(OH)2D3]
analog, increases expression of p21 (which contains a
VDRE) in normal skin (596). Vitamin D may reduce ker-
atinocyte proliferation via downregulation of the epider-
mal growth factor receptor (466). Vitamin D3 also plays a
role in keratinocyte differentiation possibly via an in-
crease in intracellular Ca2� (56).

B) VITAMIN D AND MELANOCYTE BIOLOGY. Melanocytes in
situ express the VDR (481, 791), with possible tyrosinase-
activating and melanogenic effects. Although some au-
thors have reported increased tyrosinase activity after
vitamin D3 treatment (606, 839), others reported no effect
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(3, 455). Topical application of 100 �g cholecalciferol to
ear epidermis in mice for a week increased DOPA-positive
melanocytes, and this effect synergized with UVB (3).
However, cholecalciferol added to human melanocyte
cultures did not effect melanocyte proliferation, tyrosi-
nase activity, or melanogenesis. Instead, a 25(OH)D3 and
1,25(OH)2D3 may have suppressed tyrosinase activity in
these cultures. In murine melanocyte precursors
1,25(OH)2D3 can induce differentiation, including induc-
tion of tyrosinase and DOPA activity, established from
mouse neural crest cells (871).

C) VITAMIN D AND PIGMENTARY DISORDERS. Proliferation of
human melanoma cells (expressing the VDR) is inhibited
by 1,25(OH)2D3 (125, 171), and B16 melanoma cells are
induced to differentiate, with an increase in both tyrosi-
nase activity and melanogenesis after treatment with vi-
tamin D3 (527). However, not all melanoma cells express
the VDR, or do so at very low levels, and so may not be as
responsive to the antiproliferative effects of 1,25(OH)2D3.
The presence of the VDR may also enable 1,25(OH)2D3 to
induce apoptosis in melanoma cells (138). Vitamin D3 may
inhibit migration of melanoma cells on extracellular ma-
trix and in some melanoma cell lines downregulates, tran-
scriptionally, the �6-subunit of the integrin laminin recep-
tor (256). Melanoma patients may present with lower
levels of 1,25(OH)2D3 in their sera (130). Polymorphisms
at the VDR have been suggested to influence susceptibility
to malignant melanoma (309). Furthermore, certain VDR
genotypes may be associated with red hair in melanoma
patients, similar to the case at the MC1R. Hyperpigmen-
tation may occur after topical calcipotriol use in patients
with psoriasis (370, 788). Moreover, there is some evi-
dence that topical calcipotriol may be effective in the
treatment of vitiligo (912). In another study calcipotriol
was effective even in patients that had previously re-
sponded poorly to topical corticosteroids and PUVA (14).
One possible explanation of the repigmentation noted
after calcipotriol therapy may be stabilization of aberrant
Ca2� homeostasis in vitiligo skin (keratinocytes and me-
lanocytes) (668, 669) by increasing expression of VDR in
treated skin (610).

D. Other Positive Regulators of Melanogenesis:

Bone Morphogenic Proteins

1. Bone morphogenic proteins and their receptors

Originally discovered as an osteoinductive extract
derived from bone matrix, the bone morphogenic proteins
(BMPs) consist of a family of dimeric proteins (BMP-2 to
BMP-15) that belong to the TGF-� superfamily (905). In
species as diverse as worms, flies, frogs, and humans,
BMPs play multiple pivotal roles including development,
especially in the specification of positional information in
the embryo. These secreted signaling molecules also reg-

ulate several aspects of cutaneous development and func-
tion via their participation in cell proliferation, differenti-
ation, and death (70). In addition to their involvement in
epidermal homeostasis, hair follicle growth/cycling, and
melanogenesis, evidence is accumulating to implicate
these molecules in cutaneous pathologies such as in car-
cinogenesis, hyperproliferative disorders (e.g., psoriasis),
wound healing, and innervation. Biologically active BMPs
are released extracellularly as homo/heterodimers after
cleavage of precursors proteins. Transduction of BMP
signaling ensues after the formation of a high-affinity
heterotetrameric complex that incorporates the binding
of BMP to BMP-specific type I and II receptors and in
some cases to other members of the TGF-� receptor
superfamily. Two independent signaling pathways appear
to be activated by BMPs including a canonical pathway
involving the phosphorylation of cytosolic Smad family
proteins, resulting in their translocation to the nucleus
where they can alter gene transcription. Alternatively,
BMPs can signal via a noncanonical or BMP-MAP kinase
pathway. BMP binding to its receptors can be antagonized
by noggin and follistatin among others with higher affinity
to BMP than the latter has with the BMP receptor com-
plex.

2. Bone morphogenic proteins and melanogenesis

BMPs and their associated downstream transcription
factors also influence neural crest-derived cell popula-
tions, including melanocytes, in several species. For ex-
ample, BMP-2 specifically targets tyrosinase gene expres-
sion in primary quail neural crest cultures resulting in
increased melanin synthesis (58), although BMP-2 does
not regulate melanocyte differentiation per se. Further-
more, BMP-4 may stimulate proliferation of normal hu-
man melanocytes in culture, likely via the proliferation-
associated receptor BMPR-IA (909). BMPR-IA and
BMPR-IB proteins are also expressed in retinal pigment
epithelium of rat eyes (520). Unlike the BMP-2 effect in
quail melanocytes, BMP-4 treatment of human cutaneous
melanocytes reduces the expression of mRNA and pro-
tein for tyrosinase and the tyrosinase activator PKC-�.
Production of BMP-4 is greater in melanocytes than ker-
atinocytes, suggesting that this BMP may be an autocrine
factor for melanocytes. In contrast to its effect in human
melanocytes, purified BMP-4 reduces the number of me-
lanocytes in cultures of avian neural crest cells (337, 857).
Since in these cultures Wnt signaling appears to select
melanocytes at the expense of neuronal and glial lineages,
Wnt and BMP signaling may have antagonistic functions
in cell fate determination in the trunk neural crest.

Recently, pigmentation defects in the hair follicle
were reported to occur in Noggin transgenic mice (698).
Overexpression of Noggin, an antagonist of BMP-2 and
BMP-4, in agouti mice resulted in a wide range of pheno-
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types including accelerated hair follicle development, up-
regulation of keratinocyte proliferation, and downregula-
tion of apoptosis in the hair bulb. In addition, these mice
exhibited increased eumelanogenesis in hair bulb mela-
nocytes that replaced the normal agouti pheomelanogen-
esis that occurs in wild-type mice. Thus the switch be-
tween eumelanogenesis and pheomelanogenesis may be
in part regulated by the BMP signaling pathway. There has
been a single report showing that BMP is expressed in
ocular melanoma tissue (42).

E. Summary

Therefore, among the myriad factors regulating mel-
anogenesis, the melanocortin/MC1R complex stands out
as being the most important. The demonstration of recep-
tor upregulation by UV light is particularly interesting,
indicating a novel site for physicochemical interactions
with the environment. Other important positive regulators
of melanin pigmentation include endothelines, histamine,
eicosanoids, and SCF acting via interaction with cell sur-
face receptors. Sex steroids and vitamin D can also mod-
ify cutaneous pigmentation. Thus the substantial overlap-
ping in positive regulation of melanogenesis does exist. In
this context detailed characterization of animal genetic
background becomes indispensable for the evaluation of
mechanisms in pigmentary control in gene knockout ex-
perimental models.

V. HORMONAL INHIBITORS OF

MELANOGENESIS AND RECEPTORS

A. G Protein-Coupled Receptors and Their Ligands

1. Serotonin and its receptors

A) OVERVIEW. Serotonin is the product of a multistep
metabolic pathway involving hydroxylation of L-trypto-
phan, followed by enzymatic decarboxylation (352, 486).
Mammalian skin can both synthesize and metabolize se-
rotonin by either arylalkylamine N-acetyltransferase
(AANAT) (205, 749, 750, 752, 757) or arylalamine N-acetyl-
transferase type 1 (NAT-1) (751) to produce N-acetylse-
rotonin (NAS), and possibly melatonin (717, 752). Seroto-
nin by itself can act as neurotransmitter, regulator of
vascular tone, immunomodulator, and growth factor; in
the skin it exerts proedema, vasodilatory, proinflamma-
tory, and/or pruritogenic actions (96, 352, 694, 759). Sero-
tonin actions are mediated via interaction with mem-
brane-bound receptors categorized into seven families
(5HT1–7) with at least 21 subtypes (811). Skin cells ex-
press mRNA encoding serotonin receptors 5HT-1A, -1B,
-2A, -2B, -2C, and 7, and serotonin shows variable effects
on cell proliferation (753).

B) EFFECTS OF SEROTONIN AND ITS METABOLITES ON MELANO-
CYTES. Serotonin may be involved in the regulation of
apoptosis and proliferation of melanocytes through re-
ceptors expressed by normal and malignant melanocytes
(753). Thus serotonin uptake inhibitors appear to inhibit
melanization in human melanoma cells (472). In human
SKMEL-188 melanoma cells serotonin inhibits in a dose-
dependent fashion DMEM-induced melanin production
and tyrosinase activity (Fig. 10). The serotonin metabo-
lites NAS and 5-methoxytryptamine (5-MT) are neverthe-
less devoid of effect on induced melanogenesis in rodent
melanoma cells and histocultured anagen skin; however,
they can stimulate or inhibit cell proliferation, but only at
extremely high concentrations of ligands (close to milli-
molar) (719, 755).

2. Melatonin and its receptors

A) MELATONIN PRODUCTION. Melatonin is transformed
from serotonin through a two-step pathway involving se-
rotonin acetylation by AANAT to NAS, and methylation by
hydroxyindole-O-methyltransferase (HIOMT) to produce
melatonin (793, 926). Melatonin is produced predomi-

FIG. 10. Serotonin inhibits DMEM-induced melanogenesis in SK-
MEL-188 human melanoma cells. Cells were cultured in F-10 medium or
in DMEM medium containing 5% fetal calf serum with the following
concentrations of serotonin (0, 10�8, 10�6, or 10�4 M). Media were
exchanged every 24 h, and serotonin was added every 12 h. After 3 days
cells were collected and DOPA oxidase activity of tyrosinase was mea-
sured in cell extracts. Results are means � SE; n � 3, *P � 0.05 (ANOVA
and Tukey’s multiple comparison post hoc test, Prism 4.0, GraphPad,
San Diego, CA). It is evident that serotonin at high concentration inhibits
both melanin synthesis (A) and tyrosinase activity (B). The experiments
were repeated two times with similar results. (They were performed by
Dr. Blazej Zbytek.)
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nantly in the pineal gland but also in other organs (926)
that include skin (753, 759).

B) BIOLOGICAL FUNCTION OF MELATONIN AND ITS RECEPTORS.
Systemically, the main biological roles of melatonin are
regulation/modulation of circadian rhythm, seasonal re-
production, and retinal function (926). Depending on pro-
duction site and target organ, melatonin can act as a
hormone, neurotransmitter, cytokine, or biological modi-
fier. Melatonin effects are mediated through interactions
with high-affinity membrane-bound or nuclear melatonin
receptors. In addition, it has antioxidative properties and
free radical-scavenging activity (102, 347). In mammals
two distinct seven-transmembrane domain G protein-cou-
pled receptors have been cloned and named MT1 (Mel1a)
and MT2 (Mel1b) (613, 615). The two receptor subtypes
that show 60% homology at the amino acid level can
inhibit adenylyl cyclase via pertussis toxin-sensitive Gi

proteins. In addition, MT1 receptors can control calcium
mobilization through pertussis toxin-insensitive Gq/11 pro-
teins, and MT2 receptors may be coupled to cGMP inhi-
bition. Both receptors are widely expressed (614). Ex-
pression of melatonin receptor genes has been detected in
both human skin and cultured skin cells (753), whereas
specific melatonin binding sites have been found in mel-
anomas and rodent skin (reviewed in Ref. 759).

C) MELATONIN EFFECTS ON THE PIGMENTARY SYSTEM. Melato-
nin was first isolated from pineal gland, and its biological
activity was defined by its lightening effect on frog skin
where it induces melanosome aggregation around the
nucleus of melanophores (242). The lightening response
of melatonin on skin of lower vertebrates depends on
species and source tested (139, 176, 242, 874). Melatonin
in a dose-dependent manner reverses the darkening re-
sponse to �-MSH. In furry animals of subarctic or north-
ern latitudes, circulating or local melatonin levels may
participate in the seasonal changes in pelage color (874).
Subcutaneous melatonin implants inhibit pigmentation of
regrowing hairs (after depilation) in the short-tailed wea-
sel, during molting in white-footed deermouse and Sybe-
rian hamsters (874), and may attenuate melanosis in dogs
(874). An effect of melatonin on skin pigmenation in
humans is uncertain (471, 516).

In cultured hair follicles from Siberian hamsters, mel-
atonin inhibits basal, MSH, or cAMP-stimulated melano-
genesis through post-tyrosinase mechanisms (431, 432,
875). High concentrations of melatonin also inhibited ty-
rosinase activity in histocultured skin from C57BL/6
mouse with hair follicles at anagen stage, although NAS or
its metabolite 5-MT was without effect (719). Similar re-
sults were observed in Bomirski hamster amelanotic mel-
anoma cells and Cloudman mouse melanoma cells (755).
These actions represent antagonistic activity of melatonin
against inducers of melanogenesis (L-tyrosine or MSH),
since noninduced or already melanized cells did not react
to melatonin (755). The requirement for high concentra-

tions of melatonin to elicit its antimelanogenic effect
suggests that melatonin is not acting through melatonin
receptor, e.g., this is either a metabolic effect or it inter-
acts with a receptor for unrelated ligand. Similar inhibi-
tory effect of melatonin on MSH stimulated melanogene-
sis was found in B16 melanoma, but at much lower con-
centrations (850). Specific melatonin binding sites have
been found in mouse, hamster, and human melanoma
lines (705, 755); functional melatonin receptors were
found in normal and malignant uveal melanocytes (298,
299, 625). Melatonin receptor gene expression was re-
ported in human normal and malignat epidermal melano-
cytes (753). Melatonin signal transduction in hamster mel-
anomas appears to be coupled to phosphoinositide hydro-
lysis (163), while in human and rat retinal pigment cells
melatonin receptors appear to be negatively coupled to
adenylate cyclase (506).

3. Dopamine and its receptors

Dopamine is an endogenously produced catechol-
amine whose actions are mediated through specific cell
surface receptors coupled to G proteins. They are
grouped into two main superfamilies (D1-like and D2-
like) based on biochemical, pharmacological, and molec-
ular characteristics (15). Strong evidence suggests that
the melanocortin and dopamine systems are functionally
linked (425). Dopaminergic compounds exert inhibitory
effects on the pituitary content and secretion of �-MSH
and �-endorphin, while dopamine receptor agonists and
antagonists may also affect the level of POMC mRNA
expression in the pituitary (35, 114). There are also data
suggesting competitive interaction between �-MSH and
the receptor agonists on the D1 receptor (421).

A) DOPAMINE AND MELANOGENESIS. The specific dopamine
receptor D2 agonist (LY 171555) has been reported to
inhibit hair follicular melanogenesis in pubertal (eumela-
nic phase) C3H-HeAvy mice (88); the decrease in tyrosi-
nase activity was reversed by treatment with the D2 re-
ceptor antagonists sulpiride. However, no inhibition of
hair follicular melanogenesis was observed in adult
(pheomelanic phase) mice. Thus different control mech-
anisms may be operative during periods of eumelanin and
pheomelanin synthesis.

Tyrosinase oxidizes dopamine to produce melanin
via dopamine quinone (485), although dopamine quinone
itself can in turn inactivate tyrosine hydoxylase (908).
Dopamine excess generates reactive oxygen species and
is associated with toxic effects on catecholaminergic cell
lines (396). Viability of the cells is reduced if tyrosinase
activity is selectively inhibited by phenylthiourea or 5-hy-
droxyindole (25, 271). Idiopathic Parkinson’s disease is
associated with massive cell death in the dopamine-de-
rived neuromelanin-pigmented tyrosinase-positive sub-
stantia nigra (281, 826). Indeed, there is a direct correla-
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tion between cell loss and percentage of neuromelanin-
pigmented neurons remaining in this region with greater
relative sparing of nonpigmented than of neuromelanin-
pigmented neurons.

The D1B receptor has been implicated in modulating
phagocytosis by retinal pigment epithelium while the D4
receptor is thought to be involved in the inhibition of
melatonin synthesis in photoreceptors (508). Moreover,
movement of photoreceptor cells and migration of mela-
nin granules in retinal pigment epithelial cells as well as
synthesis of melatonin in photoreceptors are mediated by
D2 receptors (679). Dopamine treatment results in disper-
sion of black and red pigments within chromatophores in
the crab Gecarcinus lateralis, which could be blocked by
the dopamine antagonist haloperidol (459).

B) DOPAMINE AND MELANOCYTE DISORDERS. In vitiliginous
skin sections, both epinephrine and dopamine can en-
hance melanogenesis in dendritic but not in nondendritic
melanocytes, suggesting variable responsitivity in mela-
nocytes of different differentiation states (327). D1 recep-
tor mRNA has been demonstrated in mouse melanoma
cells, but not in human metastatic melanoma cells (66).
Similarly, D2 receptor mRNA was not detected in mela-
noma cells, and all metastases were receptor negative by
immunohistochemistry (67). Thus antitumor effects
against melanoma cells are probably mediated by toxic
products of dopamine oxidation (888). Because of their
cytotoxicity, dopamine and their metabolites may play a
role in pathogenesis of vitiligo (135, 495).

4. Acetylcholine and its receptors

One of the important neurohormonal components of
the skin is the epidermal cholinergic system (82, 220–
222). Its neurotransmitter, acetylcholine (ACh), is synthe-
sized from acetyl coenzyme A in keratinocytes by the
enzyme choline acetyltransferase. After secretion, ACh
interacts with muscarinic and nicotinic cholinergic recep-
tors expressed predominantly in the basal or suprabasal
epidermal layers, to regulate keratinocyte proliferation,
migration, and differentiation. ACh availability is also de-
termined by its local degradation through the action of
acetylcholinesterase (AChE), present at its highest levels
in the basal kerantinocyte layer, to decrease gradually
along the vertical axis, with the lowest concentrations
below the stratum corneum. In addition to local synthesis,
cutaneous ACh is also derived from skin cholinergic nerve
endings release.

ACh is produced from choline (in the diet) and acetyl
CoA via choline acetyltransferase, and is thereafter me-
tabolized to choline and acetate by AChE. Human epider-
mal keratinocytes express cholinergic enzymes and can
synthesize, secrete, and degrade ACh (221–223). Expres-
sion of choline acetyltransferase has also been detected in
skin appendages (338). There is some evidence that ACh

metabolism may be altered in some dermatoses, e.g.,
atopic dermatitis (234) and melanoma, where expression
of ACh receptors has been linked to invasiveness (646).

ACh interacts with two subclasses of cholinergic re-
ceptors, muscarinic and nicotinic. Direct actions occur at
nicotinic receptors, while indirect action occurs via sec-
ond messengers at G protein-coupled muscarinic recep-
tors. Human epidermal keratinocytes express both nico-
tinic and muscarinic cholinergic receptors on their cell
surfaces which bind ACh and initiate cellular responses
that include maintenance of cell viability, proliferation,
adhesion, migration, and differentiation (220–223). Cal-
cium is the mediator of ACh effects in keratinocytes,
which in turn regulate expression and function of cholin-
ergic enzyme and cholinergic receptor in these cells. The
epidermis expresses several nicotinic cholinergic recep-
tors (nAChR) that can change in number and subunit
composition dependent on their differentiation status.
They are ion channel-coupled neurotransmitter receptors
that upon ACh binding maintain keratinocyte viability and
aid cell differentiation. In contrast, muscarinic G protein-
coupled receptors respond more slowly, with M1, M3, and
M5 receptors stimulating phosphoinositide metabolism
and M2 and M4 receptors inhibiting adenylyl cyclase.
Muscarinic receptor pathways can regulate keratinocyte
proliferation and migration.

A) ACETYLCHOLINE AND MELANOGENESIS. As in other neural
crest-derived cells, melanocytes express cholinesterase
activity and muscarinic receptors during their migratory
phase, in the embryo. Thus it is altogether likely that these
cells are responsive to ACh, as has already been shown
for melanoma cells (646; see below). ACh appears to
inhibit melanogenesis and also has an inhibitory effect on
dopa oxidase activity of marginal melanocytes in vitiligo
(326). Similar inhibition of melanin synthesis was demon-
strated in human melanoma cells (83). In a study designed
to assess the effects of prostaglandins on human iridial
pigmentation, ACh (used as another test substance in this
study) was found not to affect pigmentation (43). Still, all
five mAChR subtype mRNAs have been detected in nor-
mal human melanocytes, and expression of the receptors
themselves was noted in human skin specimens by immu-
nohistochemistry (82). Similarly, mAChR subtypes (m2
and m3) have been detected in the retinal pigment epithe-
lium of chick (178, 186, 545) and humans, where they are
coupled to phosphoinositide hydrolysis and Ca2� mobili-
zation. Melanocytes in culture express �9,000 high-affin-
ity receptors per cells, and micromolar concentrations of
muscarine or carbachol can transiently increase intracel-
lular Ca2�. Thus these receptors may regulate melanocyte
behavior and skin pigmentation by affecting the intracel-
lular concentration of free Ca2� (82). However, the liter-
ature is inconsistent here, whereby some reports suggest
that muscarinic ACh receptors are expressed in human
melanomas but are not present in normal skin melano-
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cytes. Notably, nevocytes were positive for muscarinic
receptors (399, 646).

B) ACETYLCHOLINE AND MELANOCYTE DISORDERS. An auto-
crine muscarinic cholinergic system has been reported in
human melanoma (646); thus muscarinic acetylcholine
receptors were detected in primary and metastatic human
melanomas, as was choline acetyltransferase and cho-
linesterase activity in melanoma cell lines (646). More-
over, the expression of muscarinic receptors appeared to
be associated with melanoma cell contractability. Since
the same investigators did not detect ACh receptors in
normal melanocytes, they concluded that their reexpres-
sion in melanoma cells, after transient expression during
embryogenesis, may be involved in melanoma invasive
growth. The expression of muscarinic receptors in pri-
mary malignant melanomas appears to be heterogeneous
and correlates with melanoma cell infiltrative and meta-
static capacity (399). Tumor cells located centrally were
found to express little or low levels of ACh receptor while
melanoma cells intensely ACh positive were located
around this negative center as clusters of atypical mela-
nocytes. Interestingly, melanoma cells infiltrating the sur-
rounding normal tissue were also reported to express
muscarinic receptors (399). One study has reported a
lower level of acetylcholinesterase activity in vitiligo skin
compared with normal skin (326). Moreover, perilesional
regions of depigmenting vitiligo epidermis containing
dendritic melanocytes were negative for acetylcholines-
terase, becoming positive upon repigmentation. The au-
thor concluded that lower acetylcholinesterase activity in
melanocytes may result in increased inhibition of mela-
nocyte ACh aggravating depigmentation in vitiligo.

B. Melanocortins Antagonists

1. Agouti protein

Agouti coloration is typically seen in the wild-type
color of mice as a banded pigmentation pattern of the
pelage, in which each hair is black with a subapical band
of yellow. The agouti locus (a) on mouse chromosome 2
regulates the cyclical production of black and yellow
pigment granules, thereby generating the agouti coat
color of the mouse (708, 897). Agouti protein acts within
the microenvironment of the hair follicle during hair
growth, switching eumelanin synthesis into pheomelanin
synthesis.

The mouse agouti gene encodes a 131-amino acid
polypeptide with a signal peptide; the mature protein has
10 cysteine residues near the carboxy terminus (87). Ag-

outi gene transcripts of 0.8 kb are expressed in the testis
and skin but not in melanocytes (87). Alternative isoforms
of agouti mRNA contain different noncoding first exons
located 100 kb apart, and their expression is controlled by
regulatory elements that are either ventral specific or hair

cycle specific (865). The agouti protein is produced in
dermal papilla cells (482). Recessive agouti mutations
result in all-black hairs, while the dominant alleles cause
an all-yellow phenotype in mice. Structural alterations in
the agouti gene cause detectable changes in the expres-
sion of gene transcripts; for example, the 0.8-kb mRNA is
not detected in the skin of C57Black mice carrying the a

mutation (87).
In humans, the agouti gene has been mapped to

chromosome 20q11.2 and encodes a protein of 132 amino
acids with 85% homology to the mouse agouti protein
(390, 892). The human agouti gene is expressed in adipose
tissue, testis, ovary, and heart and at lower levels in liver,
kidney, and foreskin (892). Expression in transgenic mice
of the human agouti protein, also named agouti signaling
protein (ASP), produced a yellow coat (892), although
human hair does not show the agouti pattern. Expression
of ASP in cell culture blocks the �-MSH-stimulated accu-
mulation of cAMP in mouse melanoma cells (892). Nota-
bly, agouti protein is produced in a hair stage-specific
manner and functions as antagonist for the MC1R (439).
MC1R is encoded by the extension (e) locus on mouse
chromosome 8 (624). Dominant extension locus muta-
tions are associated with the all-black phenotype of re-
cessive agouti mutations, while recessive extension locus
mutations cause the all-yellow phenotype as in dominant
agouti mutations.

A dominant agouti mutation, lethal yellow (Ay), has
received particular interest, because in addition to an
all-yellow phenotype, lethal yellow heterozygotes display
profound obesity, diabetes, and increased tumor suscep-
tibility. The lethal yellow heterozygotes overexpress a
larger agouti transcript in all tissues examined (87, 483).
This aberrant expression is due to chromosomal rear-
rangement that results in the production of a chimeric
gene and mRNA of �1.1 kb. The lethal yellow mutation is
caused by a 120-kb deletion in the agouti gene (153),
where the first exon is replaced by a novel sequence on
the lethal yellow mRNA, but the 3�-portion of the mutant
RNA retains the intact protein-coding region of the agouti

gene. The DNA source for the 5�-novel sequence of lethal

yellow RNA is the 5�-noncoding exon of a previously
uncharacterized gene, termed Raly (480) or Merc (153).
Raly/Merc may represent an RNA-binding protein; it is
expressed in preimplantation embryo, throughout devel-
opment, and in adult tissues, but Raly is not expressed in
the lethal yellow allele. Thus the dominant pleiotropic
effects associated with Ay mutation may result from ec-
topic overexpression of the wild-type agouti gene prod-
uct under control by the Raly promoter, and the recessive
embryonic lethality may be the results of the lack of Raly

gene expression in the early embryo.
Murine agouti protein causes both time- and concen-

tration-dependent suppression of melanogenesis in B16
F1 murine melanoma cells, while the same protein has
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minimal or no effect on �-MSH stimulation of melanogen-
esis (305). Similar to the murine protein, human agouti
protein decreased melanogenesis in cultured human epi-
dermal melanocytes, and markedly inhibited pigmenta-
tion and the production of eumelanosomes in black eu-
melanogenic murine melanocytes (652). In the latter,
melanosomes became pheomelanosome-like in structure,
and eumelanin production was significantly decreased.
Agouti protein also induced time- and dose-dependent
decreases in melanogenic genes expression, including
those encoding tyrosinase, tyrosinase-related protein 1,
and TRP2/DCT. Agouti protein coordinately regulates
lipid metabolism in adipocytes. Dietary composition in-
fluences the pigmentary phenotype in viable yellow agouti
mice (873). Maternal supplementation of a/a dams food
with extra folic acid, vitamin B12, choline, and betaine did
switch fur color in Avy/a offsprings from yellow (agouti)
towards brown (pseudoagouti) phenotype. It was con-
cluded that in mammalian systems transposable elements
can serve as targets for early nutritional effects on epige-
netic gene regulation of which Avy is an example (873).

A) AGOUTI-RELATED PROTEIN. Agouti-related protein
(AGRP) was identified from a search of the EST database
using the sequence of agouti protein as a template (706).
Ubiquitous overexpression of human AGRP cDNA in
transgenic mice caused obesity without altering pigmen-
tation (533). The human AGRP gene exhibits polymor-
phisms both in its promoter and coding regions, which
could affect the expression levels of AGRP and expres-
sion of phenotype (23, 469, 863). Like agouti protein,
AGRP contains a putative signal sequence and a cysteine-
rich carboxy terminus. AGRP functions as a paracrine-
signaling molecule that regulates body weight in the hy-
pothalamus by antagonizing signaling through MC3R and
MC4R. This orexigenic function of AGRP is responsible
for the obesity seen in lethal yellow (Ay) mice, in which
agouti protein is aberrantly overexpressed in many tis-
sues, including the brain, and mimics the function of
AGRP. Conversely, AGRP does not bind MC1R in vitro, as
determined by its failure to induce cAMP accumulation in
the cells overexpressing MC1R (533), and by direct bind-
ing assay (916). However, AGRP does appear to inhibit
the binding of agouti protein to MC1R (533). The latter
observations suggest that AGRP and agouti protein may
share a binding site on MC1R. However, in transgenic
mice, AGRP has no noticeable effect on pigmentation
(533).

2. Agouti modifiers

A) ATTRACTIN OR MAHOGANY. The mahogany (mg) locus
was identified as the source for a recessive suppressor of
agouti protein; namely, functional mahogany protein is
required for the action of agouti protein that modifies coat
color by antagonizing the MC1R. Mahogany is a 1,428-

amino acid, single-transmembrane domain protein that
functions as an accessory receptor for agouti protein and
is expressed in many tissues, including pigment cells and
the hypothalamus (236). The extracellular domain of the
mahogany protein is the ortholog of human attractin, a
circulating molecule produced by activated T cells, sug-
gesting a molecular basis for cross-talk between melano-
cortin receptor signaling and immune function (236).
These two proteins are generated by alternative splicing
of mRNAs. Attractin (Atrn) is a low-affinity receptor for
agouti protein, but not AGRP (260). Attractin affects the
balance between agonist and antagonist at receptors on
melanocytes and mediates interactions between activated
T cells and macrophages.

Attractin is also involved in the control of metabolic
rate and feeding behavior independent of its suppression
of agouti (148). Mice homozygous for the Atrn(mg-3J)

allele have reduced body weight due to increased energy
expenditure.

B) MAHOGANOID OR MAHOGUNIN. The mutant mahoganoid
(md), also known as Mahogunin (Mgrn1), darkens the
coat color and decreases the obesity of A(y) mice that
aberrantly overexpress agouti protein. Pigmentary pheno-
type and genetic interactions of mahoganoid are similar to
those of Atrn. The mahoganoid trait prevents hair follicle
melanocytes from responding to agouti protein. Mahog-
anoid encodes a 494-amino acid protein containing a
C3HC4 RING domain that may function as an E3 ubiquitin
ligase (260, 582). The human homolog is 81% identical to
mice in the primary structure, and its gene maps
to16p13.3. Like Atrn mutations that cause spongiform
neurodegeneration, a null mutation for mahoganoid
causes age-dependent neuropathology (261). The mahog-
anoid protein may represent a component of a conserved
pathway for regulated protein turnover, which is essential
for neuronal viability.

3. Melanin concentrating hormone

A) OVERVIEW. In amphibians and fishes, a dual hor-
monal control of color change is regulated by two antag-
onistic pituitary melanophorotropic hormones, MSH and
melanin-concentrating hormone (MCH). MCH is a 17-
amino acid cyclic peptide that was originally isolated
from chum salmon pituitaries (350). Salmon MCH induces
melanosome aggregation within melanophores of teleost
fish (whitening of the color). MCH is present in the neu-
rons of lateral basal hypothalamus of fishes, and MCH-
immunoreactive axons project into the brain and pituitary
(504). In addition, salmon MCH has a potent inhibitory
action on CRF-induced �-MSH and ACTH secretion in
vitro by teleost pituitary glands (30).

Human MCH, a 19-amino acid cyclic peptide, is iden-
tical to rat MCH (503, 595, 858), but differs from salmon
MCH by an amino-terminal extension of two amino acids
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and four additional substitutions. MCH is an orexigenic
neuropeptide showing opposing and antagonistic actions
to �-MSH on feeding behavior and energy homeostasis
through a mechanism other than interference with the
MC3 or MC4 receptor (441). The MCH receptor of 353
amino acids was identified as the orphan G protein-cou-
pled receptor SLC-1 that is sequentially homologous to
the somatostatin receptor (110, 649). The receptor SLC-1
is stimulated by MCH to mobilize intracellular Ca2� and
reduce forskolin-elevated cAMP levels (110). Subse-
quently, a second form of MCH receptor, MCHR2, was
identified (18, 272, 493, 645), and the SLC-1 is referred to
as MCHR1. MCHR2 consists of 340 amino acids and
shares �38% identity with MCHR1. MCHR1 and MCHR2
are widely expressed in various regions of the brain.

B) MCH SIGNALING SYSTEM AND MELANOCYTES. In lower ver-
tebrates, MCH induces melanosome aggregation within
melanophores (whitening of the color). In mammals,
MCH expression was detected in cultured human endo-
thelial cells but not in human keratinocytes, melanocytes,
and fibroblasts (285). MCHR1, but not MCHR2, expres-
sion was detected in human melanocytes and melanoma
cells (285, 286, 650). Stimulation of cultured human me-
lanocytes with MCH reduced the �-MSH-induced increase
in cAMP production (285). Furthermore, the melanogenic
actions of �-MSH were inhibited by MCH. MCHR1 has
also been identified as a novel autoantigen in patients
affected with vitiligo (353). Thus the MCH/MCHR1 system
is functional in human skin and may regulate skin pig-
mentation through modifications of melanocortin signal-
ing.

C. Cytokines, Growth Factors, and Receptors

1. IL-1, IL-6, and IFN-� and -� and their receptors

Pigmentary changes are common features of postin-
flammatory and immunomodulatory events (513) and in-
volve cytokines and growth factors. IL-1 is one of the
most potent proinflammatory mediators and exists in two
17-kDa forms, IL-1� and IL-1�, synthesized as 31-kDa
precursors in a range of cell types including epidermal
keratinocytes and melanocytes (20, 764). IL-1 binds two
specific receptors: a biologically active 80-kDa form
called IL-1RI and an inert 60-kDa decoy protein, called
IL-1RII. When IL-1� and IL-1� bind to IL-1RI, the IL-1
accessory protein joins to form the active complex that
signals via NF�B, JNK/AP-1, and p38 MAP kinase path-
ways (422). Similarly, IL-6 (formerly known as BSF-2 and
IFN-�) is a pleiotropic cytokine that participates in immu-
nomodulation, hematopoiesis, inflammation, and onco-
genesis; it is produced by many cell types, including ker-
atinocytes and fibroblasts, and stimulates proliferation in
keratinocytes, being essential for wound healing (424).
The receptor for IL-6, IL-6R, shares subunits with other

members of the cytokine superfamily of receptors. The
IL6-R consists of two molecules, IL-6R� and gp130; it
activates JAK tyrosinase kinases to induce the SHP-2/
GAB-mediated ERK MAP kinase pathway and the STAT3-
mediated pathway (276). Lastly, the interferons consist of
a large family of antiviral peptides including IFN-� (12
subtypes), IFN-� (keratinocyte specific), IFN-
, and
IFN-�. These are classified as type I interferons with
common three-dimensional structure and class of cell
surface receptors. Type II interferon is represented by the
acid labile IFN-�, with its associated distinct cell surface
receptors. IFN-� is a 45-kDa homoglycoprotein with pleio-
tropic and primarily immunologic functions that is pro-
duced under pathological conditions, mostly by lympho-
cyte subpopulations. Biological function of IFN-� is me-
diated by a receptor complex that signals via JAK1 and
JAK2 members of the Janus family of protein tyrosine
kinases (818).

A) IL-1, IL-6, AND IFN AND MELANOGENESIS. Melanocytes
express and react to a myriad of cytokines and growth
factors and thus can be viewed as an immunocompetent
skin cell type with the potential to modulate its responses
under different conditions. In fact, melanocytes have a
dual function as participants and targets in the inflamma-
tory response (440). Melanocyte phenotype is modulated
in vitro by IL-1�, IL-�, IL-6, TNF-�, and TNF-�, all of
which markedly reduce the expression of melanocyte-
specific antigen gp100, while enhancing the expression of
VLA-2, ICAM-1, and HLA class I antigens, and inducing the
expression of HLA-DR (379). IFN-� also induces the ex-
pression of MHC II antigens in melanocytes, although not
on all melanoma cell lines; some of these constitutively
express the class II antigens. Nevertheless, IFN-� appears
to be unique in its ability to induce MHC II expression in
melanocytes and melanoma (28, 292).

Melanocytes express and produce both IL-1 and IL-6
in culture (764, 801). IL-1� and to a lesser extent IL-6 elicit
a dose-dependent decrease in tyrosinase activity in nor-
mal human epidermal and uveal melanocytes in vitro
(297, 379, 800). IL-1� also inhibits tyrosinase activity
(801). Both interleukins inhibited melanocyte prolifera-
tion, but in a noncytotoxic manner, as evidenced by the
resumption of melanocyte proliferation after cessation of
treatment. However, IL-1� has also been reported to stim-
ulate melanogenesis in organ-cultured guinea pig skin
(449).

Similar variability of IL-1 effects on melanocytic cells
has been reported on �-MSH binding in melanoma cells
(59). When stimulatory for �-MSH binding, IL-1 treatment
correlated with �-MSH-associated increase in both tyrosi-
nase activity and melanin formation (192).

UVB radiation exposure stimulates the synthesis of
both IL-1 and ET-1 in keratinocytes. However, while ET-1
stimulates melanogenesis and melanocyte proliferation
(313), IL-1� is reported to do the opposite (106, 315, 678,
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800). Both IL-1 and ET-1 upregulate MC-1R activity and
message, while TNF-� has the opposite effect. With re-
gard to IL-6 inhibition of melanogenesis, this appears to
be mediated by downregulation of the paired homeodo-
main factor Pax3 (343). Thus a sharp decrease in Mitf
mRNA and gene promoter activity precedes the IL-6 as-
sociated reduction in melanogenesis. The Mitf promoter
contains a cis-acting element that binds Pax3 and that
mediates the IL6R/IL6. Pax3 expression declines after IL-6
treatment in B16/F10.9 melanoma cells.

Both IFN-� and IFN-� mRNA are expressed in nor-
mal cultured cutaneous melanocytes, but IFN-� mRNA,
unlike IFN-�, is rarely expressed in melanoma cells (659).
Expression of the proteins may be inducible, by poly-
inosinic polycytidylic acid (PPA), in the case of IFN-� in
melanocytes and some melanoma cell lines. Notably, PPA
also induced IFN-� mRNA and protein in some melanoma
cells and inhibited the proliferation of melanoma cells, an
effect blocked by anti-IFN-� antibody in cell lines that
produced IFN-�. Skin hyperpigmentation has indeed been
described during antiviral therapy with IFN-� (891), oc-
curring on the skin and tongue in dark-skinned individu-
als. Increased melanogenic activity was also confirmed at
the affected sites.

Intercellular adhesion molecule-1 (ICAM-1), an im-
portant regulator of immune cell-target interactions, is
normally expressed at very low levels by normal cultured
human melanocytes. Those levels can be significantly in-
creased, in a physiologically relevant dose-dependent
manner by IFN-�, TNF-�, or IL-1� (919). Indeed, mice
overexpressing IFN-� (under the influence of involucrin
promoter) exhibit striking reduction in IFN-� receptor
expression but increased in ICAM-1 and MHC class II
molecules expression on the surface of the transgenic
keratinocytes. Transgenic mice exhibit hypopigmentation
of the hair, due to a reduction in DOPA-positive melano-
cytes, as well as reddened skin, hair loss, and flaky skin
lesions. It is of note that IFN-� can upregulate the expres-
sion of some melanosomal antigens in melanoma cells,
e.g., gp75, and that monoclonal antibody to gp75 can lead
to tumor rejection in syngeneic mice (808). The overall
inhibitory effect of INF-� is documented by the observa-
tion that transgenic mice overexpressing INF-� in epider-
mal keratinocytes develop hair hypopigmentation (100).

B) IL-1, IL-6, IFN, AND MELANOCYTE DISORDERS. IL-1� ob-
tained from stimulated human monocytes inhibits the
proliferation of some human melanoma cells in culture
and may even exhibit cytocidal effects (535). Moreover,
growth inhibition is reported to become irreversible with
time, and cells are eventually lost from the cultures. How-
ever, IL-1� antiproliferative effects in cultures of mela-
noma cells are variable, and sensitivity to growth inhibi-
tion by this cytokine may not correlate directly with the
origin or biological behavior of the tumor lines (393).

IFN-� and IFN-� that do not stimulate melanin syn-
thesis when used alone exert differentiation influences on
murine melanoma cells in the presence and absence of
�-MSH (synergism) (345). In fact, the increase in pigment
levels is significantly higher than in cells cultured with
�-MSH only. Tyrosinase levels were unaffected, and thus
stimulation of melanogenic activity is likely to occur via
the activation of preexisting tyrosinase. The number of
�-MSH receptors on IFN-treated cells also increased sig-
nificantly, a mechanism that could participate in postin-
flammatory skin pigmentation (345).

In lentigo senilis-associated hyperpigmentation, ET-1
is increased in lesional, compared with perilesional, epi-
dermis. The expression of TNF-� is also upregulated in
lesional epidermis, whereas IL-1� appears to be down-
regulated (342). IgG anti-melanocyte antibodies have
been reported to stimulate IL-1� and IFN-� production in
mononuclear cells in vitiligo, a phenomenon possibly
linked to melanocyte destruction by monocytes (925).
IL-6 production was also increased in vitiligo mononu-
clear cells, and ICAM-1 expression was enhanced on viti-
ligo melanocytes, perhaps increasing leukocyte-melano-
cyte attachment.

2. TNF-�, TNF-� (lymphotoxin-�), and TGF-�1 and

their receptors

TNF-� (formerly cachectin), its closely related cyto-
kine TNF-� (now called lymphotoxin-�, LT-�), and TGF-�
are involved in multiple cellular and inflammatory im-
mune reactions through activation of corresponding re-
ceptors (144, 416, 814). TNFs and TGF-�s, along with a
myriad of other cytokines (371), are modulated in the skin
by diverse stimuli, most importantly UVR. As indicated
elsewhere in this review, melanocytes are stimulated by
some cytokines and growth factors (e.g., basic fibroblast
growth factor, ET-1, hepatocyte growth factor, SCF) and
inhibited by these and other cytokines

TNF-� and LT-� are encoded by genes that reside
within the HLA class III region on chromosome 6 in
humans. They bind to two receptors of the TNF receptor
family, TNF-R1 and TNF-R2, and transduce signaling in-
tracellularly via these receptors when expressed on the
cell surface. TNF effects are blocked when these recep-
tors are expressed as soluble “decoys” in body fluids.
Both TNF-� and LT-� are trimeric proteins that exert their
effects after receptor trimerization at the cell surface.
While both TNF-� and LT-� can bind to both receptors
with high affinity, soluble TNF-� may bind preferentially
to TNF-R1. TNF-R1 is considered the most active and
upon binding of TNF-� activates NF�B and AP-1 tran-
scription to induce genes for proinflammatory and immu-
nomodulatory molecules (814).

A) TNF-�, TGF-�1, AND MELANOGENESIS. TNF-� is present in
both the epidermis and dermis of normal skin (359).
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TNF-� elicits a dose-dependent decrease in the activity of
tyrosinase and inhibits melanocyte proliferation (800).
While TNF-� also appears to be cytostatic, it is not cyto-
toxic, since melanocytes remain viable despite continu-
ous treatments with the cytokine, with recovery of cell
proliferation upon cessation of TNF-� treatment. TNF-�-
associated inhibition of melanogenesis has also been re-
ported in B16 melanoma (461), where TNF-� at nanomo-
lar concentrations inhibits both tyrosine hydroxylase and
dopa oxidase activities of tyrosinase, without affecting
levels of tyrosinase-related protein 2/dopachrome tau-
tomerase (TRP2/DCT).

TNF-� treatment of B16 mouse melanoma cells can
also alter the expression of other melanosomal proteins
and has been shown to reduce melanoma expression of
gp87 (mouse ortholog of gp100 encoded by the silver
locus) (462). It is of note that while gp87 protein expres-
sion was almost undetectable after TNF-� treatment,
�-MSH blocked this TNF-�-associated reduction in pro-
tein expression without affecting gp87 mRNA levels.
These results suggest the involvement of regulatory trans-
lational and/or posttranslational events. In B16 melanoma
cells and melan-a melanocytes, TGF-�1 also inhibits mel-
anogenesis by decreasing tyrosinase and TRP-1 levels,
although again no effect was observed on TRP-2 activity.
While TGF-�1 downregulates tyrosinase by decreasing
both gene expression and the intracellular half-life of the
enzyme, the cytokine does not appear to block tyrosinase
stimulation by �-MSH. Moreover, as treatment with
TGF-�1 does not appear to alter melanosome number, the
inhibitor effect of TGF-�1 may reside at the rate-limiting
step of the melanogenic pathway.

Treatment of cells with TGF-�1, however, lowered
the percentage of fully mature stage IV melanosomes and
resulted in the accumulation of incompletely melanized
melanosomes, inhibition of total melanin formation, and a
hypopigmenting effect (460). However, both TGF-�1 and
TNF-� only slightly diminish MC1 receptor gene expres-
sion and have no effect on the intracellular levels of
cAMP, or even the �-MSH-dependent rise in cAMP levels.
Indeed, there is no evidence that TGF-�1 or TNF-� block
the response to �-MSH. Thus these effectors are likely to
operate via �-MSH-independent routes, and the overall
balance may dictate phenotypic outcome (463). Contribu-
tion to the overall hypopigmentary effect of both TNF-�
and TGF-�1 may involve a reduction in the expression of
gp87, although, unlike TNF-�, TGF-�1 does not affect the
expression of this melanosomal protein (462). Both
TGF-� and TNF-� exhibit variable antiproliferative effects
on melanoma cell lines that correlate positively with their
stimulation of collagenase secretion. Notably, a TNF-�-
associated increase in NF�B levels is seen in the apopto-
sis-sensitive melanocyte lines; the TNF-�-induced sensi-
tivity to apoptosis correlated with low basal pigment lev-

els, and resistant cells were more heavily pigmented
(696).

B) TNF-�, LT-�, AND TGF-� IN MELANOCYTE DISORDERS. A
major limitation in the clinical use of TNF has been severe
dose-limiting toxicity when administered systemically.
However, when TNF-� is administered at low doses with
melphalan, it reportedly exhibits significant antitumor ac-
tivity (639). There is also some evidence that TNF-� can
downregulate the vascular epidermal growth factor re-
ceptor and fetal liver kinase-1 (Flk-1) on endothelium in a
human melanoma xenograft model (479). This may ex-
plain the apparently selective targeting of tumor vascula-
ture, and the sparing of injury to surrounding normal
tissues. However, tumor sensitivity to TNF-� appears to
be variable, and the release of endothelial-monocyte-acti-
vating polypeptide II (EMAPII) may render the tumor-
associated vasculature more sensitive to TNF-�. Indeed, if
EMAPII is constitutively overexpressed in TNF-�-resis-
tant human melanoma cells, increased tumor TNF-� sen-
sitivity can be observed in vivo (907).

Pretreatment of some melanoma lines with inhibitors
of NF�B activation can markedly increase apoptosis in
lines expressing death receptors for TNF-�-related apop-
tosis-inducing ligand (TRAIL). Thus activation of NF�B by
TRAIL may play an important role in resistance of mela-
noma cells to TRAIL-induced apoptosis. Treatment of
both normal melanocytes and melanoma cells in vitro
with TNF-� has been reported to upregulate the expres-
sion of ICAM-1 (362, 862). The high concentrations of
ICAM-1 in sera of patients with metastatic melanoma have
been shown to correlate with raised serum concentra-
tions of TNF-R1 and TNF-R2 (362, 862).

In addition to TNF-�, human melanoma cell lines also
express LT, where it appears to be constitutively ex-
pressed and characterized by the presence of a spliced
and full-unspliced LT mRNA (478). Mice deficient in LT-�
exhibit enhanced growth of syngeneic B16F10 melanoma
cells compared with wild-type littermates, and metastases
to lung were enhanced in the LT-��/� mice. The principal
immune deficiency associated with lack of LT-� appeared
to be an impairment in the recruitment of NK cells to lung
and liver, despite their normal total numbers (320). Over-
all, genetic variation in either TNF-� or LT-� production is
nevertheless unlikely to play a major role in the clinical
course of melanoma (294).

D. Other Negative Regulators of Melanogenesis

Vitamin E (�-tocopherol) can act as a potent inhibitor
of melanogenesis (310). This effect is connected with
inhibition of tyrosinase activity via posttranslational
mechanism (193) and inhibition of active oxygen species-
induced DNA damage (310). Ceramide-2, which belongs
to a novel class of lipid second messengers, also inhibits
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melanogenesis in human melanocytes through stimula-
tion of extracellular signal-regulated protein kinase
(ERK) and Akt/protein kinase B (360). Zinc �2-glycopro-
tein is produced locally by keratinocytes, and it inhibits
melanogenesis in normal and malignant melanocytes
(251).

A potential role for thyroid hormones in melanin
pigmentation was analyzed in vitro using the B16 mela-
noma model (365, 768, 769). These studies demonstrated
that triiodothyronine (T3) but not thyroxine (T4) inhibited
both basal tyrosinase activity and melanin synthesis act-
ing at the transcriptional level. Furthermore, T3 inhibited
imidazole-stimulated tyrosinase gene expression and ac-
tivity in B16 melanoma cells. However, further studies are
necessary to define pigmentary effects of thyroid hor-
mones, since Graves� disease can be associated with gen-
eralized urticaria, alopecia areata, vitiligo, and general-
ized hyperpigmentation (759). Nevertheless, local auto-
paracrine mechanisms of action can be envisioned, since
molecular elements of pituitary-thyroid axis were de-
tected in the mammalian skin (761).

E. Summary

Therefore, suppression or inhibition of melanogene-
sis is difficult to demonstrate as a primary effect and
requires most often proof of antagonism with stimulating
agents. It is nevertheless the predominant influence of the
agouti protein that makes it stand as a significant player in
the regulation of rodent hair pigmentation. In fact, the
agouti mutations powerfully underline the importance of
its melanocortin receptor target. However, such a prom-
inent role of agouti protein cannot be assigned to human
pigmentation.

VI. MISCELLANEOUS REGULATION

OF MELANOGENESIS BY NUCLEAR

RECEPTORS AND THEIR LIGANDS

A. Glucocorticoids and Their Receptors

1. Glucocorticoid function and signaling in skin

The genomic glucocorticoid receptor (GR), the type
II corticosteroid receptor, is a member of the nuclear
receptor superfamily. However, glucocorticoids can also
act through specific receptors at the membrane to exert
effects within seconds to a few minutes, i.e., nongenomic
effects (69). Skin cells, at least malignant melanocytes,
may be able to synthesize corticosterone from progester-
one or deoxycorticosterone to yield 11-deoxycorticoste-
rone, corticosterone, and 18-hydroxydeoxycorticosterone
(728). Cultured human epidermal keratinocytes, fibro-
blasts, and whole skin biopsies contain cytosolic proteins

that bind corticoids with high affinity (526, 589). Down-
regulation of GR receptor expression in these cells has
been noted after dexamethasone treatment (526). GR dis-
tribution in skin is heterogeneous, with the strongest
expression in basal and isolated suprabasal keratinocytes
and Langerhans cells. Only weak expression was detected
in the differentiated layers of the epidermis.

2. Glucocorticoids and melanocyte biology

Both inhibition and stimulation of melanin synthesis
were reported after glucocorticoid treatment. Thus glu-
cocorticoid inhibition of melanogenesis via action on ty-
rosinase was noted in black guinea pig skin (24) and in the
C57BL/6 mouse, where dexamethasone treatment in-
duced catagen development and termination of anagen-
associated melanogenesis (169). The latter effect was
connected with a decrease of tyrosinase and DCT activi-
ties, attenuation of tyrosinase gene expression and pro-
tein production, as well as inhibition of MC1 receptor and
POMC genes expression (169). It has been suggested that
dexamethasone inhibited melanogenesis indirectly, for
example, through attenuation of MSH receptor signal sys-
tem (762).

Glucocorticoids may also be involved in melanocyte
development and differentiation. Thus hydrocortisone in-
hibits the proliferation of mouse epidermal melanoblasts
inducing instead the proliferating cells to differentiate
into melanocytes. These hydrocortisone effects were seen
only when pigment cells were cultured in the presence of
keratinocytes, and not in medium conditioned with kera-
tinocytes or their extracts (278). The synthetic glucocor-
ticoid triamcinolone acetonide has been reported to in-
hibit growth in the GR-expressing mouse melanoma cell
lines B16/F10 and B16/C3 (623). Interestingly, inhibition
of B16 cell growth by glucocorticoids may occur only in
vivo (in established tumors and transplants) and not in
vitro (134). As regards effects on pigmentation, dexameth-
asone treatment of B16 melanoma cells results in a dose-
dependent increase in melanin content (319), a pheno-
typic effect that correlates with increased expression of
tyrosinase mRNA. Moreover, dexamethasone was noted
to antagonize the 12-O-tetradecanoylphorbol 13-acetate
(TPA)-associated decrease in tyrosinase mRNA level, sug-
gesting that glucocorticoid regulation of tyrosinase activ-
ity is exerted at a transcriptional level. All steroids, dexa-
methasone, hydrocortisone acetate, and prednisolone,
produce significant inhibition of B16 melanoma growth as
assessed by mean tumor diameter and weight (but not by
effect on pulmonary metastases).

The GR is expressed in the majority of human mela-
noma tumors, with higher expression levels in metastasis
to lymph nodes and soft tissue compared with primary
tumor. The expression of GR also increased in parallel
with tumor invasion and thickness levels. Notably, pa-
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tients with GR-negative melanomas tend to have a longer
survival than those with GR-positive tumors. As already
mentioned, glucocorticoid treatment inhibits the growth
of GR-expressing human melanoma cells in culture (150),
and triamcinolone increases melanogenesis in the human
melanoma cell line NEL, by increasing tyrosinase activity
and DOPA incorporation into melanin. Triamcinolone-
treated NEL cells showed no changes in cAMP levels,
whereas actinomycin prevented the increase in tyrosinase
activity. Glucocorticoids also enhance the killing effect of
photodynamic therapy combined with a hematoporphyrin
derivative in B16 melanoma cells engrafted in a trans-
plantable mouse tumor model (133).

B. Retinoids and Their Receptors

1. Retinoid function and signaling

Retinoids represent a group of natural and synthetic
analogs of vitamin A or all-trans-retinol, which can bind
and activate nuclear retinoid receptors. All-trans-retinoic
acid is biologically the most active retinoid (346), with the
skin being one of its production sites. The cellular retinoic
acid binding proteins (CRABPs) can regulate retinoic acid
action by preventing binding to nuclear retinoid recep-
tors. When applied to human skin, all-trans-retinoic acid
can be metabolized to the less-active 4-hydroxyretinoic
acid (152). All-trans-retinoic acid binds and activates
members of the retinoic acid receptor family (RAR-�, -�,
-�), while 9-cis-retinoic acid activates mainly the retinoid
X receptor family (RXR -�, -�, -�), but also RARs (453).
These receptors usually pair-up and form RAR/RXR het-
erodimers that bind specific DNA sequences, the retinoid
responsive elements (RARE or RXRE). Human epidermis
contains up to five times more RXR protein (90% RXR-�)
than RAR (179).

2. Retinoids and melanocyte biology

Retinoic acid can induce, in a developmentally re-
stricted manner, differentiation of neural crest-derived
cells (17, 154). In general, retinoic acid appears to influ-
ence, in a concentration-dependent manner, cell lineage
fate decisions in neural crest-derived cells to favor cat-
echolaminergic over melanocytic cells (17, 154), which
suggest antipigmentary action. However, retinoic acid (at
100 nM) can terminally differentiate melanocyte progeni-
tors (propigmentary effect) (154). This suggests that reti-
noic acid appears to be more potent as inducer of mela-
nocyte maturation than development; it can thus promote
basal levels of melanogenesis (i.e., differentiation) in mel-
anoma cells (436). In humans with different basal pigment
levels, retinoic acid can induce tyrosinase activity in
white skin, but not in black skin (812).

Retinoic acid can inhibit melanoma and melanocyte
proliferation (185, 436), although with considerable vari-

ability in the response across melanoma cell lines (159,
289). Both all-trans-retinoic acid and 9-cis-retinoic acid
induce growth arrest and differentiation of S91 melanoma
cells (776). Induction of differentiation is preceded by
increased expression and activity of PKC-� (637). Mela-
noma clones overexpressing PKC-� exhibit reduced dou-
bling times, diminished anchorage-independent growth,
and increased melanin production, similar to the pheno-
typic changes induced by retinoic acid treatment in con-
trol cells (235). A role for PKC-� in the retinoic acid-
induced melanoma differentiation is supported by the
observation that retinoic acid action is antagonized by the
PKC inhibitor TPA. The latter is commonly used in mela-
nocyte culture systems to stimulate melanocyte growth
and differentiation (162). Retinoic acid also increases
AP-1 activity in some melanomas. The mechanism for the
retinoic acid-induced cell cyle arrest of melanomas is not
known (509). Differences in retinoid metabolism between
melanocytes and melanoma include increases in the
former in endogenous retinol and in [3H]retinoic acid
production from [3H]retinal (631). Retinoic acid stimu-
lates �-MSH receptor expression in S91 melanoma cells
(108) and upregulates pigmentation in B16 melanoma
cells by increasing �-MSH receptor expression (637).

Some reports have presented results discrepant with
above, e.g., that retinoic acid inhibited the melanogenetic
response to �-MSH or L-tyrosine (540, 541) or that it
blocked imidazole-induced tyrosinase expression in B16
melanoma cells (770). Retinoic acid may have also inhib-
ited UVB-induced melanogenesis in S91 melanoma cells
and normal neonatal melanocytes through inhibition of
tyrosinase and TYRP1 synthesis (627). Studies examining
the efficacy of topical tretinoin on photoaging show lim-
ited reduction in epidermal melanin on actinic lentigines
and mottled hyperpigmentation (52, 232, 882). Topical
tretinoin also lightens postinflammatory hyperpigmenta-
tion and may even partially lighten normal skin in black
individuals (86). While retinoic acid does not appear to
significantly alter melanogenesis of cultured normal hu-
man melanocytes, it can alter cell shape, suggesting that
retinoic acid may act on cytoskeleton proteins (397, 543).
More recent contradictory data on retinoic acid effects on
melanocytes (924) leave unclear its precise contribution
to bleaching treatments (364).

C. Summary

Therefore, the effect of glucorticoids and retinoids is
more selective on differentiation than pigmentary activity.
Further insight into the chemistry of these factors and
their receptors may prove fruitful in the management of
pigmentary disorders including melanoma.
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VII. FUNCTIONAL REGULATION OF

FOLLICULAR (HAIR) AND EPIDERMAL

MELANIN UNITS

A. The Epidermal Melanin Unit

1. Development of cutaneous pigmentary units

Cutaneous melanocytes originate in the neural crest,
where the emergence of a committed melanocyte lineage
cells appears to be determined mainly by MITF, fibroblast
growth factor 2, and ET-3 amongst others (155). Melano-
cyte precursors, melanoblasts, migrate from the dorsal
portion of the closing neural tube (609) and move dorso-
laterally to eventually populate, nonrandomly, the basal
layer of the epidermis and the hair follicle. It appears that
human melanocytes enter the dermis and are already
present in the epidermis earlier than 7 wk estimated
gestational age, at 2 wk before hair morphogenesis (283).
Recently, it has been shown that keratinocyte-derived
hepatocyte growth factor may be involved in this dermal
localization of melanocytes by downregulation of E-cad-
herin in melanoblasts (381).

Melanocyte precursors experience changing micro-
environments during their migration from the neural
crest, through the dermis to the epidermis, and to their
final location within the growing hair follicle (see below).
There are at least 150 loci that affect coat color (Mouse
Genome Database). Primary among these are mutations
in the receptor tyrosine kinase c-Kit [mapped to the white
spotting (W) locus in mice] and its cognate ligand, SCF.
Another signaling pair that appears to be essential for the
development of neural crest-derived melanocytes is ET-3
with its receptor B (Ednrb) (155, 394). ET-3 itself is highly
mitogenic for undifferentiated neural crest cells and re-
sults in the preferential expansion of melanocytes (34).

The temporal and spatial regulation of adhesive prop-
erties of melanoblasts and melanocytes are also likely to
affect migration from the neural crest to the skin. Move-
ment of these cells, guided by their migration substrate,
involves both integrins (577) and extracellular matrix
molecules (266). The expression of cadherins also
changes along the path of migrating melanoblasts/mela-
nocytes. E-cadherin expression is restricted to the epider-
mis while P-cadherin expression is observed in the hair
bulb matrix (275). Thus the migratory pathway taken by
melanocytes en route to the skin compartments during
development is likely to involve multiple signaling events,
both permissive and nonpermissive.

2. Melanocyte-keratinocyte interactions

Melanocytes reside, as scattered dendritic cells, in
the basal layer of the human epidermis. Considerable
interindividual and intraindividual variations in melano-

cyte population densities exist, with more than twice as
many melanocytes located in head and forearm skin com-
pared with elsewhere on the body, regardless of racial
origin (182). Thus the main contributor to racial differ-
ences in skin pigmentation is cellular activity rather than
absolute melanocyte numbers (803). The issue of the
intrinsic proliferative potential of epidermal melanocytes
has not yet been convincingly settled. An increase in
melanogenically active melanocytes is indeed seen after
UV irradiation (632), but it is not clear if these additional
cells are truly derived from division of already functioning
melanocytes. In contrast, melanocytes in the hair follicle
divide during the hair cycle. Melanocyte loss (mostly
probably via apoptosis) occurs in both sun-exposed and
covered skin with an �10% reduction per decade after 30
yr of age until 80 yr, followed by more dramatic cell loss
thereafter (512). This age-related reduction is more
marked in number of epidermal than hair follicle melano-
cytes, but the effect on overall loss of pigmentation is
subtler.

Cutaneous melanocytes, like other neural-crest de-
rived cells, exist in the context of supporting cells. In the
skin, this “supporting” role is provided by the keratino-
cyte with which melanocytes forms the epidermal-mela-
nin unit. These structural and functional cellular units
exhibit complex, life-long, cellular interactions originally
laid down during embryonic life. Each single, well-differ-
entiated, melanocyte interacts with a remarkably consis-
tent complement of �36 viable keratinocytes at various
stages of progression to the upper cornified layer of the
epidermis (180). The “blueprint” for epidermal-melanin
unit function appears to be finely drawn, with a mosaic of
discrete unit areas that are remarkably consistent be-
tween races, but variable at the regional level, e.g., the
darker skin in the folded areas of axillae and perineum.
When differentiated, melanocytes assume the highly den-
dritic phenotype that facilitates closer contact with kera-
tinocytes. While the keratinocyte partners are all linked
via desmosomal intercellular junctions, melanocytes re-
main as singly scattered cells with the degree of contact
with keratinocytes being determined by the level of ram-
ification/aborization of their dendrites. Of note, the regu-
latory role exercised by keratinocytes is restored in mel-
anoma cells if expression of E-cadherin is induced per-
mitting their adhesion to keratinocytes (295). The obvious
interaction between melanocytes and keratinocytes is the
transfer of melanin granules; nevertheless, melanocyte
growth, dendricity, spreading, cell-cell contacts, and mel-
anization can all be regulated by keratinocyte-secreted
factors (819). Keratinocytes in coculture with melano-
cytes can also suppress melanogenic proteins such as the
TyrP1, an important consideration for grafting in patients
with depigmenting disorders (583).
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3. Melanin transfer to keratinocytes

Transfer of melanin to keratinocytes in the epidermis
or cortical and medullary keratinocytes of the growing
hair shaft is presumed to involve the same mechanism(s).
At least four theories have been proposed to be involved
for this “whole organelle donation” to another cell, a
unique biological process: 1) the “cytophagic” theory,
where the keratinocyte, as active partner, phagocytoses
the tips of dendrites that contain stage IV mature mela-
nosomes (203); 2) the “discharge” theory, where mature
melanosomes are released into the intercellular space to
be internalized by adjacent keratinocytes; 3) the “fusion”
theory, where mature melanosomes pass from melano-
cyte to keratinocyte via fusion of their respective plasma
membranes (529); and 4) the “cytocrine” theory, whereby
melanocytes would inject melanin into recipient keratin-
ocytes (465). Once transferred into epidermal keratino-
cytes, melanin forms pigment caps over the keratinocyte
nuclei. Epidermal melanocytes rarely collect mature
melanosomes intracytoplasmically; instead, it translo-
cates them to keratinocytes. This is in contrast to bulbar
follicular melanocytes, which are commonly heavily laden
with fully mature stage IV melanosomes.

Studies using time-lapse digital video imaging and
electron microscopy have shown filopodia from melano-
cyte dendrites as the conduits for melanosome transfer to
keratinocytes (686). When melanocytes were cocultured
with keratinocytes, a highly dendritic phenotype was in-
duced characterized by extensive contacts between me-
lanocytes and keratinocytes through filopodia, many of
which contained melanosomes. Melanocyte dendricity is
also likely to be important in melanin transfer and the
dendrites of melanotic bulbar melanocytes in some
mouse mutants, e.g., dilute (d) or pink-eye dilute (p) are
abnormally short. Notably, myosin V (encoded by the
dilute gene) has also been proposed as the molecular
motor involved in dendrite outgrowth in mammalian me-
lanocytes (398, 853, 881); mutations at that locus are
associated with dilution of hair color (257). Moreover,
phagocytosis of melanosomes by keratinocytes is medi-
ated via the activation of the protease-activated receptor
2 on keratinocytes, and inhibitors of PAR2 retard mela-
nosome transfer (690).

B. Regulation of Hair Cycle-Coupled

Follicular Melanogenesis

1. Development of hair follicle

By 7 wk estimated gestation age, melanocytes are
already present in the human epidermis and remain there
until hair morphogenesis begins, �2 wk later (283). With
the onset of hair follicle morphogenesis, some melano-
blasts leave the epidermis and distribute randomly as

dopa-positive and dopa-negative cells in the forming hair
follicle and occasionally in the sebaceous glands (321).
Melanogenic melanocytes can be detected in all stages of
human hair morphogenesis from the hair germ stage on-
wards, usually confined to the peripheral regions of the
hair follicle (259). Once the hair fiber has formed, mela-
nocytes are noted in large numbers near the basal lamina
around the apex of the follicular papilla. While melano-
cyte mitosis is observed in the human epidermis at 14 wk
estimated gestation age, mitosis of pigment cells is rarely
observed in the hair follicles themselves. Melanocytes
undergoing apoptosis are occasionally seen in the follic-
ular tract (259).

During embryonic life murine follicular melanocytes
do undergo apoptosis after injection of a Kit blocking
antibody (ACK2) (320). Postnatally c-kit is also required
for melanocyte activation during the hair growth cycle,
although the melanocyte stem cell compartment appears
to exhibit SCF/c-kit independence (71). Melanoblasts ex-
press c-kit as a prerequisite for migration into the SCF-
supplying hair follicle epithelium. While differentiated c-
kit-positive melanocytes target the bulb, c-kit-negative
melanoblasts invade the outer root sheath and bulge in
fully developed hair follicles (578).

2. Adult hair follicle

Melanocytes in the fully developed anagen follicle
can be assigned to four distinct anatomic compartments
on the basis of staining patterns with DOPA, Masson
silver, toluidine blue, and thionine. In the mature hair
follicle, dopa-positive melanotic melanocytes are readily
detectable in outer root sheath of the infundibulum and
around the upper dermal papilla. Dopa-negative amela-
notic melanocytes are detectable in the mid to lower
outer root sheath. The fourth sector demarcates the
amelanotic dopa-negative melanocytes distributed in the
periphery of the bulb and most proximal matrix. Imma-
ture melanocytes have been clearly demonstrated in the
adult hair follicle (287, 828). Immunostaining with NKI-
beteb, a monoclonal antibody that detects a (pre)melano-
some glycoprotein (859), detects all dopa-positive cells
but also highlights some dopa-negative melanocytes of
the mid outer root sheath (287). While the dopa-oxidase
activity of tyrosinase is not detectable in amelanotic hair
follicle melanocytes, the protein itself may be detected in
some of these cells (546). Similarly, while Kit and Bcl-2
reactive melanocytes are present in this hair follicle com-
partment (231), these amelanotic melanocytes do not ex-
press the melanogenic enzymes TRP-1 and TRP-2 (287).

The hair bulb, however, is the only site of pigment
production for the hair shaft and contains both highly
melanogenic melanocytes and a minor subpopulation of
poorly differentiated, NKI-beteb�, pigment cells (828,
829). It has been speculated that amelanotic hair bulb
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melanocytes may represent a pool of “transient” melano-
cytes that migrate from precursor melanocytes stores in
the upper outer root sheath (783, 828, 829). The restric-
tion of melanogenically active melanocytes to the upper
hair matrix of the anagen hair follicle, just below the
precortical keratinocyte population, correlates with the
observation that melanin is transferred during anagen to
the hair shaft cortex, less so to the medulla, and, very
rarely, the hair cuticle. Melanogenically active melano-
cytes in the hair bulb form functional units with neigh-
boring immature precortical keratinocytes that receive
their melanized secretory granules and ultimately form
the pigmented hair shaft. Bulbar melanocytes also inter-
act closely with the dermal papilla as evidenced by their
direct contact during the anagen with the thin and per-
meable basal lamina separating from the mesenchymal
dermal papilla.

3. Follicular melanin unit

While follicular melanocytes are derived from epider-
mal melanocytes during hair follicle morphogenesis,
these pigment cell subpopulations diverge in many impor-
tant ways as they distribute to their respective distinct
compartments. The “follicular-melanin unit” resides in the
“immune privileged” proximal hair bulb (57, 121, 886) and
consists of one melanocyte for every five keratinocytes in
the hair bulb as a whole; the ratio is 1:1 in the basal
epithelial layer next to the dermal papilla (831). Hair bulb
melanogenic melanocytes differ from epidermal melano-
cytes in being larger, with longer and more extensive
dendrites, containing more developed Golgi and rough
endoplasmic reticulum, and producing two- to fourfold
larger melanosomes (39). While melanin degrades almost
completely in the differentiating layers of the epidermis,
eumelanin granules transferred into hair cortical keratin-
ocytes remain minimally digested (39). Thus eumelanic
white individuals may have dark black hair but very fair
skin and blue eyes.

Activity of the hair bulb melanocyte is under cyclical
control and melanogenesis is tightly coupled to the hair
growth cycle (738), in contrast to epidermal melanogen-
esis, which appears to be continuous (517). Hair grows
cyclically through a finite period of hair shaft formation
(anagen; �3–5 yr in human scalp), a brief regression
phase resulting in the apoptosis-driven resorption of up to
70% of the hair follicle (catagen; �3 wk in human scalp),
and a relatively quiescent period (telogen; �3 mo in hu-
man scalp) (112, 363). Even before catagen-associated
structural changes, towards the end of anagen VI, the
earliest signs of imminent hair follicle regression become
apparent, e.g., retraction of melanocyte dendrites and
attenuation of melanogenesis (744, 745). Keratinocyte
proliferation, however, continues for some time, and most
proximal telogen hair shaft remains unpigmented. The

melanogenically active melanocytes of the anagen phase
are no longer detectable during catagen. The hair bulb
melanocyte system has long been viewed as self-perpet-
uating whereby melanocytes involved in the pigmentation
of one hair generation are also involved in the pigmenta-
tion of the next (794). However, melanocytes would need
to survive/avoid the extensive apoptosis-driven regres-
sion of the hair bulb (426, 878). It now appears that
“redifferentiating” melanocytes in early anagen are more
likely to correspond to newly recruited immature mela-
nocytes derived from a melanocyte reservoir (230) lo-
cated in the upper, “permanent,” outer root sheath. This
view is supported by the observation that immature me-
lanocytes are located very close to the secondary epithe-
lial germ of the telogen club (708) where they are com-
monly small, have high nuclear to cytoplasmic ratios, and
inactive cytoplasm with very few organelles. In the
C57BL/6 mouse model, many highly melanotic hair bulb
melanocytes do not survive catagen (830).

The relatively quiescent telogen hair germ contains
precursors for all the cell types that will make the fully
developed anagen VI hair follicle. Melanin synthesis is not
detected by histologic or histochemical examination in
telogen hair follicles, but very low tyrosine hydroxylase
activity of tyrosinase can be detected; this disappears on
days 1 and 2 after anagen induction (741). Undifferenti-
ated melanocytes/melanoblasts of the telogen germ are
stimulated at the start of anagen and respond by increas-
ing their cell volume. This anagen-associated signal pre-
dates the melanogenic stimulus delivered during anagen
III and is followed by active melanogenesis and subse-
quent transfer of mature melanosomes into precortical
keratinocytes. Melanocytes in the S phase of the cell cycle
occur as early as anagen II, and significant proliferation is
clearly apparent by anagen III (795). Mitosis is also ob-
served in melanogenically active cells, indicating that me-
lanocyte differentiation does not preclude mitotic activ-
ity. Ultrastructural changes in bulbar melanocytes that
accompany anagen III to full anagen progression include
1) increased dendricity, 2) development of Golgi and
rough endoplasmic reticulum, 3) increased size/number
of melanosomes, and 4) transfer of mature melanosomes
to precortical keratinocytes.

VIII. UNIFIED CONCEPT FOR THE

TRANSCRIPTIONAL REGULATION OF

MELANOGENESIS: A KEY ROLE FOR

MICROPHTALMIA-ASSOCIATED

TRANSCRIPTION FACTOR

MITF plays a fundamental role in the regulation of
mammalian pigmentation. This is evidenced by the genet-
ically determined pigmentary disorders resulting from
semidominant mutation at the Mitf (Mi) locus in mice

HORMONAL REGULATION OF MELANOGENESIS 1201

Physiol Rev • VOL 84 • OCTOBER 2004 • www.prv.org

on A
ugust 24, 2014

D
ow

nloaded from
 



(647, 648, 701, 810, 918). The main phenotypic effects
include loss of pigmentation, reduced eye size, early onset
of deafness, lack of mast cells, and failure of secondary
bone resorption. Dominant mutations at its human ho-
molog MITF [Waardenburg syndrome type 2A (WS2A)
and Tietz syndrome (TS)] are characterized by patchy
depigmentation of hairs and skin, hearing loss, and het-
erochromia iridisin WS2A, while TS is characterized by
generalized albinism, profound deafness, and hypoplasia
of eyebrows. Thus clinical, genetic, and experimental ob-
servations clearly demonstrate that Mitf/MITF is essential
for the development and function of melanocytes, retinal
pigment epithelium (RPE), mast cells, and osteoclasts.

The MITF gene contains at least 13 exons, and at
least 5 multiple alternative promoters and transcription
initiation sites (701) (Fig. 11). There are at least five MITF
isoforms (A, B, C, D, H, and M) that are products of
alternative initiation of transcription driven by different
promoters and process of alternative splicing (810). There
are also three additional isoforms MITF-C, MITF-E, and
MITF-MC, but the location of their first exon is unknown.
All isoforms share the carboxy terminus (encoded by 8
downstream exons) containing a serine-rich region,
bHLH-LZ structure, and transcriptional activation domain
differing in the amino terminus. The amino terminus in
the MITF-M isoform is encoded by the melanocyte-spe-

FIG. 11. MITF-M protein in the regulation of melanocyte
activity. A: MITF gene structure. B: regulation of MITF-M. C:
MITF-M associated transcriptional activity in the Wnt signal-
ing pathway. [Modified from Saito et al. (648).]
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cific exon 1 (exon 1M), and its expression is exclusive to
the melanocyte lineage, because of its unique melanocyte-
restricted promoter enhancer.

Selective requirement of Mitf-M for melanocyte de-
velopment was verified by the molecular analysis of
black-eyed white, Mitf mi-bw mice (911), characterized by
white coat color, deafness, and normally pigmented RPE
without ocular abnormalities. The molecular lesion in
Mitf mi-bw mice is the insertion of an L1 retrotransposable
element in the downstream intron (see Fig. 11), leading to
complete repression of transcription from the M pro-
moter.

The promoter region of MITF-M contains CREB,
SOX10, PAX3, and LEF-1 binding sites that stimulate gene
transcription by interacting with the corresponding regu-
latory factors and �-catenin (647, 648, 701, 810, 918) (Fig.
11). The predominant pathways driving the activity of this
promoter are those activated by Wnt and MSH. Most
recently, MITF-M distal enhancer (MDE) was identified
14.5 kb upstream from exon 1M that would act as an
upstream cis-acting element required for efficient tran-
scription of M promoter (Fig. 11). It contains two func-
tional SOX10 binding sites, and its role in regulation of
pigmentation is underlied by the phenotype of the ho-
mozygous red-eyed white Mitfmi-rw mutant showing red
eyes and white coat with some pigmented spots around
the head and the tail.

WS is genetically heterogeneous and exhibits senso-
rineural hearing loss and abnormal pigmentation that are
caused by melanocyte deficiency in the cochlea and skin.
It is noteworthy that other subtypes of WS are associated
with mutations in the genes coding for PAX3 and SOX10,
both of which are involved in the transcriptional regula-
tion of the MITF gene (701). PAX3, containing a paired
homeodomain, is responsible for WS1 and WS3 (31, 290,
815–817). SOX10, containing a high-mobility group box as
a DNA-binding motif, is responsible for Waardenburg-
Hirschsprung syndrome, also known as WS4 (268, 584),
which is characterized by aganglionic megacolon in addi-
tion to auditory-pigmentary abnormalities. Thus MITF,
PAX3, and SOX10 constitute a regulatory network con-
troling melanocyte development.

MITF-M function is also regulated at the posttransla-
tional level through phosphorylation at the serine resi-
dues and by interaction of MITF-M with CBP/p300 tran-
scription coactivator complex, and with ubiquitin conju-
gating enzyme hUBC9 (Fig. 11). Phosphorylation of Ser-73
by MAP kinases activated by the Steel/c-Kit signaling
pathway upregulates MITF-M functions, being further
stimulated by interaction with CBP/p300 (Fig. 11). c-kit

also phosphorylates MITF-M at Ser-409 through serine/
threonine kinases (Rsk), resulting in short-lived activation
followed by proteolytic destruction. Phosphorylation at
position Ser-73 by MAP kinases also allows binding of
hUBC9 and targeting for degradation. Glycogen synthase

kinase 3� (GSK-3�) also phosphorylates MITF-M at Ser-
298 (Fig. 11) (648). The latter is complicated in the way
that GSK-3� inhibits Wnt signaling (�-catenin) (889), and
also is inhibited by the c-Kit signaling pathway through
PI3P/AKT cascade (889). Thus regulation of MITF-M as
well as of other MITF isoforms is complex and involves
transcriptional and posttranslational mechanism acti-
vated by different signaling systems (Fig. 11), as well as
degradation pathways necessary to provide tight homeo-
static control of MITF-M in the melanocytes.

MITF-M is a target for Wnet (a cysteine rich glyco-
protein important for neural crest cells development)
through activation of its Frizzled receptor, inhibition of
GSK-3�, and stimulation of �-catenin accumulation (Fig.
11). 	-catenin not only participates in stimulation of
MITF-M promoter activity but also in stimulation of MRP
gene transcription. MITF-M in cooperation with LEF-1
also stimulates its own transcription and that of tyrosi-
nase-related genes (Fig. 11). Since the M promoter region
does not contain M or E boxes, MITF-M acts as a cofactor
for LEF-1.

MITF thus plays a fundamental role providing posi-
tive regulation of transcription of tyrosinase, TyrP1 and
TyrP2 genes through interaction with M and E boxes, a
prerequisite for production of melanin pigment. Further-
more, the promoter region of the MC1-R contains E-box
sequences and binds MITF-M, thus stimulating the expres-
sion of both MRPs and MSH receptor (21). The latter
suggests that MIITF-M not only regulates production of
melanogenic proteins at mRNA level, but also may regu-
late indirectly posttranscriptional and posttranslational
steps of melanogenesis through MC1R. The hypothesis
that MITF-M serves as a master regulator of the melano-
genic apparatus is supported by the demonstration of
actual melanogenesis after overexpression of this tran-
scriptional factor in fibroblast. Finally, factors that stim-
ulate melanogenesis induce MITF-M, while those inhibit-
ing melanin synthesis inhibit MITF-M, with MITF-M being
expressed in all normal melanocytes and the vast majority
of melanoma cells. MITF-M can also produce sustained
growth and survival of melanocytes through the upregu-
lation of the major antiapoptotic agent bcl2 (474). There-
fore, MITF-M may act as a self-regulating switchboard for
diverse pathways originating at the cell membrane or
intracellular environment and regulating the activity of
the melanogenic apparatus (Fig. 12).

IX. MELANOGENESIS AS MOLECULAR SENSOR

AND TRANSDUCER OF ENVIRONMENTAL

SIGNALS AND REGULATOR OF

LOCAL HOMEOSTASIS

The type and concentration of cutaneous melanin
pigment determines its critical functions in camouflage,
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mimicry, social communication, and protection against
the harmful effects of solar radiation. Epidemiological
data show that highly pigmented skin in humans is asso-
ciated with a severalfold decrease in the risk of skin
cancer. The human skin pigmentary response to UV is
biphasic with immediate skin darkening, predominantly
seen with UVA, and delayed longer lasting response (tan-
ning), predominantly induced by UVB (181, 213, 561). The
immediate darkening effect is rapid (within minutes), and

transient (fades within hours). This response implies that
the elements of melanogenic apparatus must act as
unique molecular receptors of solar light energy, for rapid
transduction into visible phenotypic effect (skin darken-
ing) (747). The various physical properties of melanin
(paramagnetic, oxidoreductive, ion exchange, optical,
photoreactive, and electric) as well as the physicochem-
ical nature of melanogenesis indicate that the light-in-
duced changes must affect epidermal homeostasis
through changes in the internal environment of cells bear-
ing melanosomes, and through flux of ions or other bio-
active molecules across gap junctions of the epidermis
(Fig. 13). Light wavelength per se also affects melanogen-
esis. Thus UVA induces dark pigmentation predominantly
in basal keratinocytes, and UVB induces melanin distri-
bution throughout the epidermis, although the most ener-
getic and mutagenic UVC has little or no pigmentary
effect.

Melanosomes are metabolically active organelles
that can, and do, affect the state and function of the host
melanocyte or keratinocyte (746). This is related to their
oxygen consumption that modifies the energy-yielding
metabolism, alterations of the intracellular NAD/NADH
and NADP/NADPH ratio or stimulation of the pentose
phosphate shunt, the buffering of calcium and other ions,
the reversible binding of bioregulatory compounds, inter-
nalization of toxic factors, and production of biologically
active intermediates of melanogenesis (reviewed in Refs.

FIG. 12. MITF-M as molecular switchboard for melanogenic
signals.

FIG. 13. Melanogenically active melanocyte as the sensor
and computing cell regulating cutaneous homeostasis. [Mod-
ified from Slominski et al. (746).]
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736, 739, 746). Thus melanosomes represent cell regula-
tory packages sent to neighboring keratinocytes to coor-
dinate the response to signals that have activated mela-
nocytes. Intermediates of melanogenesis, also released by
melanocytes, may even affect the local immune system
(743, 746). One intermediate, L-DOPA, serves in fact as a
precursor to catecholamines (161). Thus after signals of
varying natures are relayed to the melanogenic apparatus,
they may trigger cascades of responses modifying local
homeostasis. Systemic effects may also become evident
as in the attenuation of the vitamin D3 photosynthetic
response after tanning, or in its strong dependence on
racial pigmentation (468).

It must be emphasized that in addition to environ-
mental physical signals, melanocytes are exposed to mul-
tiple chemical and biological signals generated within its
vicinity, distally, or by nerve endings. Thus melanogenic
responses can also be elicited by local stress within the
epidermis. These melanogenesis-associated stress re-
sponses are likely addressed at counteracting environ-
mental insults, and/or optimizing homeostatic adaptation
mechanisms. Thus this system of multidirectional com-
munications within the skin provides a new level for the
local regulation of skin function in which melanogenic
activity serves as a unique molecular sensor and trans-
ducer of noxious signals and as regulator of local ho-
meostasis.

X. COMMENTS AND FUTURE DIRECTIONS

When considering the multiple functions of the mel-
anogenic apparatus, it is understandable that myriad hor-
mones and molecular factors would be involved in the
regulation and “fine-tuning” of melanogenesis. Thus the
complex regulatory control of the biosynthetic machinery
involved in melanogenesis includes receptor-mediated
pathways activated by hormones, neurotransmitters, cy-
tokines, growth factors, and eicosanoids as well as recep-
tor-independent mechanisms activated or modified by nu-
trients, micromolecules, microelements, pH, cations and
anions concentrations, and the oxidoreductive potential
in the physicochemical milieu. Soluble factors can reach
their target (melanocyte) from circulation, from release
by nerve endings, or from local production to act as
positive or negative melanogenesis regulators.

The most important positive regulator is the MC1R,
with its ligands melanocortins and ACTH. Other locally
produced factors are represented by the endothelins, im-
portant stimulators of melanogenesis in melanocytes, and
with a positive role in the embryonic development of
pigmentation. A crucial role in embryonic development of
the melanin pigmentation as well as in the formation of
hair follicle pigmentary unit is the SCF with its c-kit

receptor. Less significant, although still potent positive

regulators of cutaneous melanogenesis are components
of the skin immune system such as histamine and eico-
sanoids; these are produced locally or delivered from
systemic circulation. Miscellaneous participants in mela-
nogenesis are �-endorphin, estrogens, androgens, vitamin
D3, and catecholamines. The nutritional factors L-phenyl-
alanine, L-tyrosine, and L-DOPA are crucial for melanin
synthesis with the last two amino acids acting as both
substrates and positive (hormonelike) regulators in the
conversion of L-tyrosine into the pigment melanin. Be-
cause the latter functions have only been documented in
cultured cells, the general concept will require extensive
in vivo testing.

The most important negative regulator of melanogen-
esis, which determines the type of melanin synthesized, is
the locally produced ASP. ASP switches eu- to pheomela-
nogenesis and also inhibits the pathway by acting as
antagonist to melanocortins (competitively and noncom-
petitively) through its binding to the same or separate
sites on the MC1R. ASP is a significant player in the
regulation of rodent hair pigmentation; however, such a
prominent role as agouti protein cannot be assigned to
human pigmentation. Negative regulation is also provided
by the cytokines IL-1, IL-6, INF-�, and TNF-�, produced by
the skin immune system, and by growth factor TGF-�.
Melatonin is a potent lightening factor in the skin of lower
vertebrates that can inhibit hair pigmentation in furry
animals, although its function on human pigmentation is
still unclear. There are indications that dopamine, ACh,
and possibly serotonin can inhibit melanin pigmentation.
Among factors with mixed functions, i.e., both positive
and negative regulators of melanogenesis, are glucocorti-
coids and retinoids. Interestingly, a dual effect for ET-1 on
melanin synthesis in cell culture has also been described
whereby it stimulates melanogenesis at low (physiologi-
cal) concentrations and inhibits the process at high (phar-
macological) concentrations (515).

The most important biochemical pathways regulating
melanogenesis are activated by cAMP, although PKC also
plays a regulatory role. These pathways act at transcrip-
tional, translational, and posttranslational levels. Among
the transcriptional regulators, the most important is MITF
that acts as the central switchboard for the routing of the
various signals involved in the expression of melanogen-
esis-related genes, thus defining at any given time the
prevailing melanogenic algorithm.

It is worth emphasizing that melanogenesis is regu-
lated directly (through receptor-mediated or metabolic
action on melanocytes) or indirectly through stimulation
of other cellular targets, which in turn release biologic
regulators or simply change the chemical environment of
melanocytes. Furthermore, instant receptiveness selectiv-
ity to pro- or antimelanogenic signals of melanocytes
could also be modulated by modification of receptor ex-
pression or signal transduction or transcriptional activity;

HORMONAL REGULATION OF MELANOGENESIS 1205

Physiol Rev • VOL 84 • OCTOBER 2004 • www.prv.org

on A
ugust 24, 2014

D
ow

nloaded from
 



it can also be tuned-up by bioregulatory factors that alone
would have no activity on melanogenesis. Indeed, some-
time conflicting results reported in the literature may have
been determined by the environmental context of the
particular bioregulator action. These complex interac-
tions are characteristically expressed in the function of
the hair pigmentary unit where melanogenesis is coupled
to the anagen phase of hair cycle. It is currently assumed
that anagen coupled melanogenesis is primarily driven by
the local circuitry regulating hair growth interacting at
multiple points with follicular melanogenesis.

In summary, the multidirectional nature and hetero-
geneous character of the melanogenesis-modifying agents
clearly define a highly complex regulatory system. It is
also clear that the controlling factors are not arranged in
simple linear sequences. Instead, as presented in this
review, melanogenesis regulators and their modifiers in-
teract in a model best described as a multidimensional
network, with extensive overlapping and diversity of fac-
tors acting in a nonrandom fashion determined by the
biochemical-physical context. Precise definition of hierar-
chical positions in this model will help clarify existing
gaps and discrepancies on the current information on
mammalian melanin pigmenation.
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